A cascading learning method with SegFormer for radiographic measurement of periodontal bone loss

Author:

Yu Hanwen,Ye Xin,Hong Wanjing,Shi Rui,Ding Yi,Liu Chengcheng

Abstract

Abstract Objective Marginal alveolar bone loss is one of the key features of periodontitis and can be observed via panoramic radiographs. This study aimed to establish a cascading learning method with deep learning (DL) for precise radiographic bone loss (RBL) measurements at specific tooth positions. Materials and methods Through the design of two tasks for tooth position recognition and tooth semantic segmentation using the SegFormer model, specific tooth’s crown, intrabony portion, and suprabony portion of the roots were obtained. The RBL was subsequently measured by length through these three areas using the principal component analysis (PCA) principal axis. Results The average intersection over union (IoU) for the tooth position recognition task was 0.8906, with an F1-score of 0.9338. The average IoU for the tooth semantic segmentation task was 0.8465, with an F1-score of 0.9138. When the two tasks were combined, the average IoU was 0.7889, with an F1-score of 0.8674. The correlation coefficient between the RBL prediction results based on the PCA principal axis and the clinicians’ measurements exceeded 0.85. Compared to those of the other two methods, the average precision of the predicted RBL was 0.7722, the average sensitivity was 0.7416, and the average F1-score was 0.7444. Conclusions The method for predicting RBL using DL and PCA produced promising results, offering rapid and reliable auxiliary information for future periodontal disease diagnosis. Clinical relevance Precise RBL measurements are important for periodontal diagnosis. The proposed RBL-SF can measure RBL at specific tooth positions and assign the bone loss stage. The ability of the RBL-SF to measure RBL at specific tooth positions can guide clinicians to a certain extent in the accurate diagnosis of periodontitis.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3