Quantitative examination of factors influencing the colour reproduction ability of lithium disilicate glass-ceramics

Author:

Saláta József,Szabó Ferenc,Csuti Péter,Antal Melinda,Márton Péter,Hermann Péter,Borbély Judit,Ábrám Emese

Abstract

Abstract Background Effects of ceramic translucency, layer thickness, and substrate colour on the shade of lithium disilicate glass-ceramic restorations proved to be significant in several studies, however, quantitative, numerical results on the relationship between the colour difference and these parameters are still lacking. The purpose of this in vitro study was to quantitatively determine how the colour reproduction ability of a lithium disilicate glass-ceramic is affected by its translucency, layer thickness, and substrate colour. Methods Ceramic samples were prepared from A2 shade IPS e.max CAD blocks with high and low translucencies (HT and LT) in a thickness range of 0.5–2.5 mm (+/- 0.05 mm). Layered samples were acquired utilizing composite substrates in 9 shades; transparent try-in paste was used. The spectral reflectance of the specimens was assessed under D65 standard illumination with a Konica Minolta CM-3720d spectrophotometer. The CIEDE2000 colour difference (ΔE00) between two samples was analysed using perceptibility and acceptability thresholds set at 50:50%. Statistical analysis involved linear regression analysis and the Kruskal–Wallis test. Results An increase in the thickness of 0.5 mm reduced the ΔE00 of the HT samples to 72.8%, and that of the T samples to 71.1% (p < 0.0001). 7 substrates with HT and LT specimens had significantly different results from the mean (p < 0.05). A thickness of 0.5 mm is not sufficient to achieve an acceptable result at any level of translucency, while the low translucency ceramic at a thickness of 1.5 mm gave acceptable results, except for severely discoloured substrates (ND8 and ND9). Conclusions The colour reproduction ability of lithium disilicate glass-ceramics is significantly affected by their translucency, layer thickness, and 7 substrates out of 9 substrates examined.

Funder

Semmelweis University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3