Author:
Sun Xin,Tang Xiaodong,Cheng Kangjie,Xia Zhuoheng,Liu Yunfeng,Yang Fan,Wang Linhong
Abstract
Abstract
Background
Clinical scenarios frequently present challenges when patients exhibit asymmetrical mandibular atrophy. The dilemma arises: should we adhere to the conventional All-on-4 technique, or should we contemplate placing vertically oriented implants on the side with sufficient bone mass? This study aims to employ three-dimensional finite element analysis to simulate and explore the biomechanical advantages of each approach.
Methods
A finite element model, derived from computed tomography (CT) data, was utilized to simulate the nonhomogeneous features of the mandible. Three configurations—All-on-4, All-on-5-v and All-on-5-o were studied. Vertical and oblique forces of 200 N were applied unilaterally, and vertical force of 100 N was applied anteriorly to simulate different masticatory mechanisms. The maximum von Mises stresses on the implant and framework were recorded, as well as the maximum equivalent strain in the peri-implant bone.
Results
The maximum stress values for all designs were located at the neck of the distal implant, and the maximum strains in the bone tissue were located around the distal implant. The All-on-5-o and All-on-5-v models exhibited reduced stresses and strains compared to All-on-4, highlighting the potential benefits of the additional implant. There were no considerable differences in stresses and strains between the All-on-5-o and All-on-5-v groups.
Conclusions
With the presence of adequate bone volume on one side and severe atrophy of the contralateral bone, while the “All-on-4 concept” is a viable approach, vertical implant placement optimizes the transfer of forces between components and tissues.
Funder
Medical Science and Technology Project of Zhejiang Province
Publisher
Springer Science and Business Media LLC