Evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation

Author:

Sultan Nessma,Jayash Soher Nagi

Abstract

Abstract Objectives Dentin, the bulk material of the tooth, resemble the bone’s chemical composition and is considered a valuable bone substitute. In the current study, we assessed the cytotoxicity and osteogenic potential of demineralized dentin matrix (DDM) in comparison to HA nanoparticles (n-HA) on bone marrow mesenchymal stem cells (BMMSCs) using a hydrogel formulation. Materials and methods Human extracted teeth were minced into particles and treated via chemical demineralization using ethylene diamine tetra-acetic acid solution (EDTA) to produce DDM particles. DDM and n-HA particles were added to the sodium alginate then, the combination was dripped into a 5% (w/v) calcium chloride solution to obtain DDM hydrogel (DDMH) or nano-hydroxyapatite hydrogel (NHH). The particles were evaluated by dynamic light scattering (DLS) and the hydrogels were evaluated via scanning electron microscope (SEM). BMMSCs were treated with different hydrogel concentrations (25%, 50%, 75% and neat/100%) and cell viability was evaluated using MTT assay after 72 h of culture. Collagen-I (COL-I) gene expression was studied with real-time quantitative polymerase chain reaction (RT-qPCR) after 3 weeks of culture and alkaline phosphatase (ALP) activity was assessed using enzyme-linked immune sorbent assay (ELISA) over 7th, 10th, 14th and 21st days of culture. BMMSCs seeded in a complete culture medium were used as controls. One-way ANOVA was utilized to measure the significant differences in the tested groups. Results DLS measurements revealed that DDM and n-HA particles had negative values of zeta potential. SEM micrographs showed a porous microstructure of the tested hydrogels. The viability results revealed that 100% concentrations of either DDMH or NHH were cytotoxic to BMMSCs after 72 h of culture. However, the cytotoxicity of 25% and 50% concentrations of DDMH were not statistically significant compared to the control group. RT-qPCR showed that COL-I gene expression was significantly upregulated in BMMSCs cultured with 50% DDMH compared to all other treated or control groups (P < 0.01). ELISA analysis revealed that ALP level was significantly increased in the groups treated with 50% DDMH compared to 50% NHH after 21 days in culture (P < 0.001). Conclusion The injectable hydrogel containing demineralized dentin matrix was successfully formulated. DDMH has a porous structure and has been shown to provide a supporting matrix for the viability and differentiation of BMMSCs. A 50% concentration of DDMH was revealed to be not cytotoxic to BMMSCs and may have a great potential to promote bone formation ability.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3