Application of entire dental panorama image data in artificial intelligence model for age estimation

Author:

Kahm Se Hoon,Kim Ji-Youn,Yoo Seok,Bae Soo-Mi,Kang Ji-Eun,Lee Sang Hwa

Abstract

Abstract Background Accurate age estimation is vital for clinical and forensic purposes. With the rapid advancement of artificial intelligence(AI) technologies, traditional methods relying on tooth development, while reliable, can be enhanced by leveraging deep learning, particularly neural networks. This study evaluated the efficiency of an AI model by applying the entire panoramic image for age estimation. The outcome performances were analyzed through supervised learning (SL) models. Methods Total of 27,877 dental panorama images from 5 to 90 years of age were classified by 2 types of grouping. In type 1 they were classified by each age and in type 2, applying heuristic grouping, the age over 20 years were classified by every 5 years. Wide ResNet (WRN) and DenseNet (DN) were used for supervised learning. In addition, the analysis with ± 3 years of deviation in both types were performed. Results For the DN model, while the type 1 grouping achieved an accuracy of 0.1016 and F1 score of 0.058, the type 2 achieved an accuracy of 0.3146 and F1 score of 0.2027. Incorporating ± 3years of deviation, the accuracy of type 1 and 2 were 0.281, 0.7323 respectively; and the F1 score were 0.1768, 0.6583 respectively. For the WRN model, while the type 1 grouping achieved an accuracy of 0.1041 and F1 score of 0.0599, the type 2 achieved an accuracy of 0.3182 and F1 score of 0.2071. Incorporating ± 3years of deviation, the accuracy of type 1 and 2 were 0.2716, 0.7323 respectively; and the F1 score were 0.1709, 0.6437 respectively. Conclusions The application of entire panorama image data for supervised with classification by heuristics grouping with ± 3years of deviation for supervised learning models and demonstrated satisfactory outcome for the age estimation.

Funder

2021 research grant from the Research Institute of Medical Science, The Catholic University of Korea, Eunpyeong St. Mary’s Hospital

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3