Exploring the molecular mechanisms of ferroptosis-related genes in periodontitis: a multi-dataset analysis

Author:

Chen Jili,Ou Lijia,Liu Weizhen,Gao Feng

Abstract

Abstract Purpose This study aims to elucidate the biological functions of ferroptosis-related genes in periodontitis, along with their correlation to tumor microenvironment (TME) features such as immune infiltration. It aims to provide potential diagnostic markers of ferroptosis for clinical management of periodontitis. Methods Utilizing the periodontitis-related microarray dataset GSE16134 from the Gene Expression Omnibus (GEO) and a set of 528 ferroptosis-related genes identified in prior studies, this research unveils differentially expressed ferroptosis-related genes in periodontitis. Subsequently, a protein–protein interaction network was constructed. Subtyping of periodontitis was explored, followed by validation through immune cell infiltration and gene set enrichment analyses. Two algorithms, randomForest and SVM(Support Vector Machine), were employed to reveal potential ferroptosis diagnostic markers for periodontitis. The diagnostic efficacy, immune correlation, and potential transcriptional regulatory networks of these markers were further assessed. Finally, potential targeted drugs for differentially expressed ferroptosis markers in periodontitis were predicted. Results A total of 36 ferroptosis-related genes (30 upregulated, 6 downregulated) were identified from 829 differentially expressed genes between 9 periodontitis samples and the control group. Subsequent machine learning algorithm screening highlighted 4 key genes: SLC1A5(Solute Carrier Family 1 Member 5), SLC2A14(Solute Carrier Family 1 Member 14), LURAP1L(Leucine Rich Adaptor Protein 1 Like), and HERPUD1(Homocysteine Inducible ER Protein With Ubiquitin Like Domain 1). Exploration of these 4 key genes, supported by time-correlated ROC analysis, demonstrated reliability, while immune infiltration results indicated a strong correlation between key genes and immune factors. Furthermore, Gene Set Enrichment Analysis (GSEA) was conducted for the four key genes, revealing enrichment in GO/KEGG pathways that have a significant impact on periodontitis. Finally, the study predicted potential transcriptional regulatory networks and targeted drugs associated with these key genes in periodontitis. Conclusions The ferroptosis-related genes identified in this study, including SLC1A5, SLC2A14, LURAP1L, and HERPUD1, may serve as novel diagnostic and therapeutic targets for periodontitis. They are likely involved in the occurrence and development of periodontitis through mechanisms such as immune infiltration, cellular metabolism, and inflammatory chemotaxis, potentially linking the ferroptosis pathway to the progression of periodontitis. Targeted drugs such as flurofamide, L-733060, memantine, tetrabenazine, and WAY-213613 hold promise for potential therapeutic interventions in periodontitis associated with these ferroptosis-related genes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3