Evaluation of flexural strength, degree of conversion, and demineralization-prevention properties in adjacent tooth structures of an experimental fissure sealant containing nano-calcium-phosphate compounds

Author:

Fallahzadeh FarnooshORCID,Pirmoradian MaryamORCID,Ghasemi Solmaz MohammadzadehORCID,Mortazavi MaryamORCID

Abstract

Abstract Background The present study aimed to evaluate the flexural strength, degree of conversion, and demineralization-prevention ability of an experimental fissure sealant containing nano-calcium-phosphate compounds. Methods An experimental sealant was formulated using silica and nano hydroxyapatite filler particles. The control group consisted of the DENU Seal (n = 10, each group). The flexural bond strength was evaluated by UTM. DC was evaluated by FTIR. To evaluate the demineralization-prevention ability, Cl V cavities in 10 third molar teeth restored with two sealant products, followed by an acid challenge then the Vickers microhardness test was carried out. Results The mean flexural strength in the commercial group was higher than the experimental group. However, the mean flexural modulus was not significantly different between the two groups. In the experimental group, DC was significantly higher than the commercial group. Adjacent to the interface, the decrease in microhardness in the experimental group was significantly less than the commercial group. However, on the tooth surface, there were no significant differences between the two groups. In the experimental group, the decrease in microhardness at the interface was less than at the tooth surface, however the situation was opposite in the commercial group. Conclusions Incorporating hydroxyapatite into the sealant structure might prevent demineralization, without adverse effects on flexural modulus and degree of conversion.

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3