Author:
Akbarzade Tina,Farmany Abbas,Farhadian Maryam,Khamverdi Zahra,Dastgir Ramtin
Abstract
Abstract
Objective
Nanomaterials with superior properties such as high surface area over volume ratio are widely used in dentistry and medicine. This in vitro study was performed to synthesize and characterize nano bioactive glass (nBG) and to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) containing nBG (CPP-ACP@nBG) on enamel remineralization by its application to pH-cycled, synthetically demineralized enamel surfaces.
Materials and methods
nBG particles were prepared by sol-gel method. X-ray diffraction pattern (XRD), Fourier-transform infrared spectroscopy (FTIR) and transmittance electron microscopy (TEM) were used for nBG characterization. Synthetic CPP-ACP paste was prepared and nBG particles were added to it. To evaluate the degree of remineralization, 32 healthy human premolars were selected. The samples were randomly divided into 4 groups as: Group 1: Commercial CPP-ACFP (MI paste plus), Group 2: Synthetic casein phosphopeptide-amorphous calcium phosphate containing fluoride (CPP-ACP@F), Group 3: Synthetic CPP/ACP containing nBG (CPP-ACP@nBG), and Group 4: Control (received no treatment). The pastes were then applied on the tooth surfaces for 28 days. The Vickers microhardness of enamel surfaces was evaluated, and enamel surface morphology was assessed using scanning electron microscopy (SEM).
Results
X-Ray diffraction pattern (XRD) of the synthesized nBG show its crystalline nature with the Larnite crystalline mode. Transmittance electron microscope (TEM) microimage of the synthesized nBG shows its formation as less that 100 nm spherical nanoparticle with partial agglomeration. Fourier transform infrared spectroscopy (FTIR) confirm the success formation of nBG with high purity. The results of this study showed that microhardness of the experimental groups was significantly higher than the control group (p ≥ 0.05). SEM images showed a layer of hydroxyapatite in the CPP-ACP@nBG, synthetic and commercial CPP-ACP@F remineralized groups.
Conclusion
The results of this study demonstrated that CPP-ACP@F and CPP-ACP@nBG remineralize the surface of the demineralized enamel. Microhardness of the remineralized enamel in the CPP-ACP@nBG group was higher than synthetic and commercial CPP-ACP@F groups.
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Gjorgievska ES, Nicholson JW, Slipper IJ, et al. Remineralization of demineralized enamel by toothpastes: a scanning electron microscopy, energy dispersive X-ray analysis, and three-dimensional stereo-micrographic study. Micros Microanal. 2013;19(3):587–95.
2. Soares R, De Ataide IN, Fernandes M, et al. Assessment of enamel remineralisation after treatment with four different remineralising agents: A Scanning Electron Microscopy (SEM) Study. J Clin Diagn Res: JCDR. 2017;11(4):Zc136–zc141.
3. (2019) Abstracts from the 25th European Dental Materials Conference, EDMC 2019, August 28–30, 2019, Brussels, Belgium, Biomaterial Investigations in Dentistry, 6: sup1, 1–22, DOI:https://doi.org/10.1080/26415275.2019.1691842.
4. Milly H, Festy F, Andiappan M, et al. Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralization. Dent Mater. 2015;31(5):522–33.
5. Babu KG, Subramaniam P. Effect of varnish containing casein phosphopeptides-amorphous calcium phosphate and fluoride on surface microhardness of enamel–An in vitro study. Saudi J Oral Sci. 2020;7(1):29–34.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献