Author:
Aherne Olivia,Ortiz Roberto,Fazli Magnus M.,Davies Julia R.
Abstract
Abstract
Background
Caries and periodontitis are amongst the most prevalent diseases worldwide, leading to pain and loss of oral function for those affected. Prevention relies heavily on mechanical removal of dental plaque biofilms but for populations where this is not achievable, alternative plaque control methods are required. With concerns over undesirable side-effects and potential bacterial resistance due to the use of chlorhexidine gluconate (CHX), new antimicrobial substances for oral use are greatly needed. Here we have investigated the antimicrobial effect of hypochlorous acid (HOCl), stabilized with acetic acid (HAc), on oral biofilms and compared it to that of CHX. Possible adverse effects of stabilized HOCl on hydroxyapatite surfaces were also examined.
Methods
Single- and mixed-species biofilms of six common oral bacteria (Streptococcus mutans, Streptococcus gordonii, Actinomyces odontolyticus, Veillonella parvula, Parvimonas micra and Porphyromonas gingivalis) within a flow-cell model were exposed to HOCl stabilized with 0.14% or 2% HAc, pH 4.6, as well as HOCl or HAc alone. Biofilm viability was assessed in situ using confocal laser scanning microscopy following LIVE/DEAD® BacLight™ staining. In-situ quartz crystal microbalance with dissipation (QCM-D) was used to study erosion of hydroxyapatite (HA) surfaces by stabilized HOCl.
Results
Low concentrations of HOCl (5 ppm), stabilized with 0.14% or 2% HAc, significantly reduced viability in multi-species biofilms representing supra- and sub-gingival oral communities, after 5 min, without causing erosion of HA surfaces. No equivalent antimicrobial effect was seen for CHX. Gram-positive and Gram-negative bacteria showed no significant differential suceptibility to stabilized HOCl.
Conclusions
At low concentrations and with exposure times which could be achieved through oral rinsing, HOCl stabilized with HAc had a robust antimicrobial activity on oral biofilms, without causing erosion of HA surfaces or affecting viability of oral keratinocytes. This substance thus appears to offer potential for prevention and/or treatment of oral biofilm-mediated diseases.
Funder
Stiftelsen för Kunskaps- och Kompetensutveckling
Malmö University
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–17.
2. eHOMD. Expanded Human Oral Microbiome database https://www.homd.org. Accessed May 2022.
3. Kolenbrander PE, Ganeshkumar N, Cassels FJ, Hughes CV. Coaggregation: specific adherence among human oral plaque bacteria. FASEB J. 1993;7:406–13.
4. Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ, Kolenbrander PE. Molecular characterization of a subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol. 2006;72:2837–48.
5. Marsh PD. Role of the oral microflora in health. Microb Ecol Health Dis. 2000;12:130–7.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献