Author:
Huang Xufeng,Liu Ying,Wang Qi,Rehman Hafiz Muzzammel,Horváth Dorottya,Zhou Shujing,Fu Rao,Zhang Ling,Szöllősi Attila Gábor,Li Zhengrui
Abstract
Abstract
Objective
Periodontitis is a chronic oral disease prevalent worldwide, and natural products are recommended as adjunctive therapy due to their minor side effects. Curcumin, a widely used ancient compound, has been reported to possess therapeutic effects in periodontitis. However, the exact mechanism underlying its activity remains unclear. In this context, the present study aimed to conduct computational simulations to uncover the potential mechanism of action of Curcumin in the treatment of periodontitis.
Materials and methods
Single-cell analysis was conducted using a dataset (i.e., GSE164241) curated from the Gene Expression Omnibus (GEO) database through an R package "Seurat package." Bulk RNA sequencing data were curated from GSE10334 and GSE16134 and processed by R package "Limma." Then, the marker genes in the single-cell transcriptome and differentially expressed genes (DEGs) in the bulk transcriptome were integrated. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were also carried out to reveal their functionalities. Key targets were mined from their protein–protein interaction (PPI) network topologically. Afterward, molecular docking was performed. The top-ranked pose was subjected to molecular dynamics simulations to investigate the stability of the docking result.
Results
FOS, CXCL1, CXCL8, and IL1B, were filtered after a series of selected processes. The results of molecular modeling suggested that except for IL1B, the Vena Scores of the rest exceeded -5 kcal/mol. Furthermore, the molecular dynamic simulation indicated that the binding of the CXCL8-Curcumin complex was stable over the entire 100 ns simulation.
Conclusion
The present study unlocked the binding modes of CXCL1, FOS, and CXCL8 with the Curcumin molecule, which were relatively stable, especially for CXCL8, hindering its promising potential to serve as the critical targets of Curcumin in periodontitis treatment.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献