Convolutional neural network for automated tooth segmentation on intraoral scans

Author:

Wang Xiaotong,Alqahtani Khalid Ayidh,Van den Bogaert Tom,Shujaat Sohaib,Jacobs Reinhilde,Shaheen Eman

Abstract

Abstract Background Tooth segmentation on intraoral scanned (IOS) data is a prerequisite for clinical applications in digital workflows. Current state-of-the-art methods lack the robustness to handle variability in dental conditions. This study aims to propose and evaluate the performance of a convolutional neural network (CNN) model for automatic tooth segmentation on IOS images. Methods A dataset of 761 IOS images (380 upper jaws, 381 lower jaws) was acquired using an intraoral scanner. The inclusion criteria included a full set of permanent teeth, teeth with orthodontic brackets, and partially edentulous dentition. A multi-step 3D U-Net pipeline was designed for automated tooth segmentation on IOS images. The model’s performance was assessed in terms of time and accuracy. Additionally, the model was deployed on an online cloud-based platform, where a separate subsample of 18 IOS images was used to test the clinical applicability of the model by comparing three modes of segmentation: automated artificial intelligence-driven (A-AI), refined (R-AI), and semi-automatic (SA) segmentation. Results The average time for automated segmentation was 31.7 ± 8.1 s per jaw. The CNN model achieved an Intersection over Union (IoU) score of 91%, with the full set of teeth achieving the highest performance and the partially edentulous group scoring the lowest. In terms of clinical applicability, SA took an average of 860.4 s per case, whereas R-AI showed a 2.6-fold decrease in time (328.5 s). Furthermore, R-AI offered higher performance and reliability compared to SA, regardless of the dentition group. Conclusions The 3D U-Net pipeline was accurate, efficient, and consistent for automatic tooth segmentation on IOS images. The online cloud-based platform could serve as a viable alternative for IOS segmentation.

Funder

Karolinska Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3