Remineralizing effect of NSF on artificial enamel caries

Author:

Mohamed Osama SafwatORCID,Hall Mohamed AshrafORCID,Karawia InasORCID

Abstract

Abstract Introduction Nanotechnology offers new approaches and endless opportunities for remineralizing tooth decay without being toxic or causing allergies. This study aimed to determine the effect of nanosilver fluoride (NSF) on the remineralization potential of enamel caries-like lesions compared to 5% sodium fluoride varnish in permanent teeth. Methods Fifteen teeth (molars and premolars) were gathered, cleaned, and polished using a scaler. After sectioning the teeth mesiodistally and removing the roots, the thirty specimens were subjected to a demineralized solution to induce early enamel lesions and then assigned randomly into two equal groups. The test materials were applied, and then all the specimens were subjected to a pH cycling model for 30 days. DIAGNOdent and surface roughness were investigated, and an evaluation of the enamel Ca and P weight% for Ca/P ratio calculation was done using SEM-EDX to analyze the specimens at the end of the study. The data were analyzed using an independent t-test. Results The mean values for the DIAGNOdent measurements for NSF and NaF at baseline and after demineralization were not significantly different (p > 0.05). After treatment, NaF varnish showed a significantly higher mean DIAGNOdent measurement (11.8 ± 5.80) than NSF (4.7 ± 1.6). The mean surface roughness of the NaF group (1.64 ± 0.39) was much higher than NSF’s mean surface roughness (1.07 ± 0.21). Specimens treated with NSF had statistically significant smoother surfaces (p < 0.001). The NSF group had a higher mean Ca/P ratio (2.9 ± 0.35) than NaF (2.2 ± 0.11). This difference was statistically significant (p = 0.012). Conclusion The study reveals that nano silver fluoride is a more effective treatment than sodium fluoride varnish in enhancing teeth’s clinical characteristics, particularly in terms of mineral content and surface roughness, suggesting it could be an improved strategy to prevent dental caries and maintain enamel integrity.

Funder

Pharos University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3