Author:
Gomez Grace Gomez Felix,Wang Mei,Siddiqui Zasim A.,Gonzalez Theresa,Capin Oriana R.,Willis Lisa,Boyd LaKeisha,Eckert George J.,Zero Domenick T.,Thyvalikakath Thankam Paul
Abstract
Abstract
Background
Decreased salivary secretion is not only a risk factor for carious lesions in Sjögren’s disease (SD) but also an indicator of deterioration of teeth with every restorative replacement. This study determined the longevity of direct dental restorations placed in patients with SD using matched electronic dental record (EDR) and electronic health record (EHR) data.
Methods
We conducted a retrospective cohort study using EDR and EHR data of Indiana University School of Dentistry patients who have a SD diagnosis in their EHR. Treatment history of patients during 15 years with SD (cases) and their matched controls with at least one direct dental restoration were retrieved from the EDR. Descriptive statistics summarized the study population characteristics. Cox regression models with random effects analyzed differences between cases and controls for time to direct restoration failure. Further the model explored the effect of covariates such as age, sex, race, dental insurance, medical insurance, medical diagnosis, medication use, preventive dental visits per year, and the number of tooth surfaces on time to restoration failure.
Results
At least one completed direct restoration was present for 102 cases and 42 controls resulting in a cohort of 144 patients’ EDR and EHR data. The cases were distributed as 21 positives, 57 negatives, and 24 uncertain cases based on clinical findings. The average age was 56, about 93% were females, 54% were White, 74% had no dental insurance, 61% had public medical insurance, < 1 preventive dental visit per year, 94% used medications and 93% had a medical diagnosis that potentially causes dry mouth within the overall study cohort. About 529 direct dental restorations were present in cases with SD and 140 restorations in corresponding controls. Hazard ratios of 2.99 (1.48–6.03; p = 0.002) and 3.30 (1.49–7.31, p-value: 0.003) showed significantly decreased time to restoration failure among cases and positive for SD cases compared to controls, respectively. Except for the number of tooth surfaces, no other covariates had a significant influence on the survival time.
Conclusion
Considering the rapid failure of dental restorations, appropriate post-treatment assessment, management, and evaluation should be implemented while planning restorative dental procedures among cases with SD. Since survival time is decreased with an increase in the number of surfaces, guidelines for restorative procedures should be formulated specifically for patients with SD.
Funder
National Institute of Dental and Craniofacial Research
Publisher
Springer Science and Business Media LLC
Reference68 articles.
1. Cartee DL, Maker S, Dalonges D, Manski MC. Sjögren’s syndrome: oral manifestations and treatment, a Dental Perspective. J Dent Hygiene: JDH. 2015;89(6):365–71.
2. Faruque M, Wanschers M, Ligtenberg AJ, Laine ML, Bikker FJ. A review on the role of salivary MUC5B in oral health. J Oral Biosci. 2022;64(4):392–9.
3. Pijpe J, Kalk WWI, Bootsma H, Spijkervet FKL, Kallenberg CGM, Vissink A. Progression of salivary gland dysfunction in patients with Sjögren’s syndrome. Ann Rheum Dis. 2007;66(1):107–12.
4. Manhart J, Chen H, Hamm G, Hickel R. Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent. 2004;29(5):481–508.
5. Fernandes NA, Vally Z, Sykes LM. The longevity of restorations -A literature review. South Afr Dent J. 2015;70(9):410–3.