Evaluation of flexural strength, impact strength, and surface microhardness of self-cured acrylic resin reinforced with silver-doped carbon nanotubes

Author:

Hamdy Tamer M.

Abstract

Abstract Background Poly-methyl methacrylate (PMMA) is a type of polymer mostly used to make denture bases. Self-cured acrylic resin (PMMA) can be used to repair a fractured acrylic denture base; however, even after repair, this area remains vulnerable. Carbon nanotubes (CNTs) could be used as a filler for polymer reinforcement. Furthermore, silver nanoparticles are efficient agents for the prevention of dental biofilm and improving their mechanical properties. The doping of CNTs with silver nanoparticles may lead to a synergistic interaction that is predicted to enhance the mechanical characteristics of the fillers. Objectives The aim of the study was to assess the influnce of manual incorporation of 0.5% weight percent (%wt.) of silver doped carbon nanotubes (Ag-doped CNTs) into commercial self-cured PMMA on its flexural strength, impact strength, and surface microhardness. Methods In this investigation, a total of 60 specimens comprised of acrylic resin were employed. They are divided into two main groups: (a) the control group, which was made by using liquid monomer and commercial self-cured PMMA powder; and (b) the modified group, prepared by hand mixing the purchased silver-doped CNTs powder (0.5% wt.) to self-cured PMMA powder (99.5%wt.), and then the blended powder was incorporated into the liquid monomer. Flexural strength, flexural modulus, impact strength, and surface microhardness were evaluated. Independent sample t-tests were used to statistically analyze the data and compare the mean values of flexural strength, flexural modulus, impact strength, and surface microhardness (p-value ≤ 0.05). Results The flexural strength of the modified groups with Ag-doped CNTs (132.4 MPa) was significantly greater than that of the unmodified (control) groups (63.2 MPa). Moreover, the flexural modulus of the modified groups with Ag-doped CNTs (3.067 GPa) was significantly greater than that of the control groups (1.47 GPa). Furthermore, the impact strength of the modified groups with Ag-doped CNTs (11.2 kJ/mm2) was significantly greater than that of the control groups (2.3 kJ/mm2). Furthermore, the microhardness of the modified groups with Ag-doped CNTs (29.7 VHN) was significantly greater than that of the control groups (16.4 VHN), (p-value = 0.0001). Conclusion The incorporation of 0.5% wt. silver doped CNTs fillers to the self-cured acrylic resin enhanced its flexural strength, flexural modulus, impact strength, and surface microhardness.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3