Author:
Dai Lin Lu,Mei May Lei,Chu Chun Hung,Lo Edward Chin Man
Abstract
Abstract
Backgroud
Root caries in aging population was prevalent worldwide. Due to the absence of enamel and specific structure of dentine, bacteria are able to penetrate further into dentine at an earlier stage of lesion development. The aim of this study was to investigate the effect of adding of a strontium-doped bioactive glass-ceramic (HX-BGC) to a fluoride-free toothpaste on prevention of formation of artificial dentine caries.
Methods
Thirty-six human tooth specimens were allocated to three groups (n = 12 per group). Group 1 treated with slurry containing a fluoride-free toothpaste and 5% HX-BGC, Group 2 was treated with fluoride-free toothpaste slurry, and Group 3 received deionized water as a negative control. The specimens were subjected to four cycles (15 h demineralization and 8 h remineralization for one cycle) of biochemical cycling. A mixed suspension of five bacteria species (Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Actinomyces naeslundii) were prepared in brain heart infusion broth with 5% sucrose and used as acidic challenge in biochemical cycling. Subsequently, surface morphology of the dentine lesion was assessed by scanning electron microscopy, while the lesion depths and mineral loss were assessed by micro-computed tomography.
Results
The mean lesion depths in dentine in Groups 1 to 3 were 87.79 ± 16.99 μm, 101.06 ± 10.04 μm and 113.60 ± 16.36 μm, respectively (p = 0.002). The mean amounts of mineral loss in Groups 1 to 3 were 0.82 ± 0.10 g/cm3, 0.89 ± 0.09 g/cm3 and 0.96 ± 0.11 g/cm3, respectively (p = 0.016). No obvious differences in the surface morphology were seen among the groups.
Conclusion
Addition of strontium-doped bioactive glass-ceramic to fluoride-free toothpaste has potential to reduce formation of dentine lesions.
Funder
Tam Wah-Ching Endowed Professorship of the University of Hong Kong
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献