Abstract
Abstract
Background
The ability of a loop to generate a certain moment/force ratio (M/F ratio) can achieve the desired tooth movement in orthodontics. The present study aimed to investigate the effects of elastic modulus, cross-sectional dimensions, loop configuration geometry dimensions, and activation force on the generated M/F ratio of vertical, L- and T-loops.
Methods
A total of 120 three-dimensional loop models were constructed with the Solidworks 2017 software and used for simulating loop activation with the Abaqus 6.14 software. Six vertical loop variations, 9 L-loop variations, and 9 T-loop variations were evaluated. In each group, only one parameter was variable [loop height, ring radius, leg length, leg step distance, legs distance, upper length, different archwire materials (elastic modulus), cross-sectional dimension, and activation force].
Results
The simulation results of the displacement and von Mises stress of each loop were investigated. The maximum displacement in the height direction was recorded to calculate the M/F ratio. The quantitative change trends in the generated M/F ratio of the loops with respect to various variables were established.
Conclusions
Increasing the loop height can increase the M/F ratio of the loop. This increasing trend is, especially, much more significant in T-loops compared with vertical loops and L-loops. In vertical loops, increasing the ring radius is much more effective than increasing the loop height to increase the M/F ratio of the loop. Compared with SS, TMA archwire loops can generate a higher M/F ratio due to its lower elastic modulus. Loops with a small cross-sectional area and high activation force can generate a high M/F ratio. The introduction of a leg step to loops does not increase the M/F ratio of loops.
Funder
Major Science and Technology Project of Hainan Province
Hainan University
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Tominaga J, Ozaki H, Chiang PG, Sumi M, Tanaka M, Koga Y, et al. Effect of bracket slot and archwire dimensions on anterior tooth movement during space closure in sliding mechanics: A 3-dimensional finite element study. Am J Orthod Detofacial Orthop. 2014;146:166–74.
2. Burrow SJ. Friction and resistance to sliding in orthodontics: a critical review. Am J Orthod Dentofac Orthop. 2009;135:442–7.
3. Sivakumar A, Valiathan A. An intra-arch retraction mechanics--a contemporary review. J Ind Orthod Soc. 2006;39:101–9..
4. Proffit WR. Closure of extraction space. In: Proffit WR, Fields HW, Sarver DM, editors. Contemporary orthodontics. 4th ed. St Louis: Mosby Elsevier; 2007. p. 592–601.
5. Nanda R, Ghosh J. Principles of biomechanics. In: Nanda R, editor. Biomechanics in clinical orthodontics. Philadelphia: Saunders; 1997. p. 6–8.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献