Role of finite element analysis for selection of single point fixation in zygomaticomaxillary complex fracture

Author:

Refahee Shaimaa MohsenORCID,Khalifa Mahmoud Elsayed,Askar Mohamed GamalORCID,Breshah Maram N.ORCID

Abstract

Abstract Background One-point fixation was superior to the two and three-points fixation in minimally displaced zygomaticomaxillary complex (ZMC) fracture regarding the cost, invasiveness, scaring, number of wounds, and operation time. Accordingly, this study aimed to predict which one-point fixation is the most stable in managing minimally displaced ZMC fracture. Material & methods This study simulated the different one-point fixation approaches on three ZMC models after fracture reduction and application of all forces exerted on the fractured area. The findings were represented as stress impact on the ZMC fracture and plating system as well as the inter-fragments micro-motion. Results The von misses stresses of plates for the zygomaticofrontal, infra-orbital rim, and zygomaticomaxillary buttress model were (66.508, 1.285, and1.16 MPa) respectively. While the screws’ von misses for the infraorbital rim, zygomaticofrontal, and zygomaticomaxillary buttress models were (13.8, 4.05, and 1.60 MPa) respectively. Whereas, the maximum principles stress at zygomaticofrontal, zygomaticomaxillary buttress, and infraorbital rim models were (37.03, 37.01, and 34.46 MPa) respectively. In addition, the inter-fragment micro-motion for zygomaticomaxillary buttress, infraorbital rim, and zygomaticofrontal models were (0.26, 0.25, and 0.15 mm) respectively. Conclusion One-point fixation at zygomaticomaxillary buttress is the preferred point because it is exposed to low stresses, and the inter-fragment micro-motion is within the approved limit with the elements in the same direction of fixation which indicates the rigid fixation. In addition, it is less palpable and scarless. Trial registration clinical trial.gov (NCT05819372) at 19/04/2023.

Funder

Fayoum University

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3