Color behavior of composite resin enhanced with different shapes of new antimicrobial polymer coated nanoparticles

Author:

Naguib GhadaORCID,Mously HishamORCID,Magdy WalaaORCID,Binmahfooz AbdulelahORCID,Qutub Osama,Hajjaj MaherORCID,Hamed Mohamed TharwatORCID

Abstract

Abstract Background Zein-coated magnesium oxide nanoparticles (zMgO NPs) demonstrate a potent antimicrobial effect, endorsing it as a compelling additive to dental materials formulations for oral health care advances. However, currently there is no data on the imprint of zMgO NPs on the color permanence of dental composites. The objective of this study is to evaluate the color stability of different types of composite enhanced with antimicrobial zein-coated magnesium oxide nanoparticles (zMgO NPs) of different shapes before and after thermocycling. Methods Two hundred composite samples were divided into four groups: Gp1: Tetric N-Flow with zMgO nanowires, Gp2: Tetric N-Flow with zMgO nanospheres, Gp3: Tetric N-Ceram with zMgO nanowires; Gp4: Tetric N-Ceram with zMgO nanospheres. Each group was subdivided into 5 subgroups (n = 10) with concentrations of zMgO NPs 0%, 0.3%, 0.5%, 1% and 2%. The characterization of the modified composite containing the zMgO was done via X-ray Diffraction, Field Emission Scanning Electron Microscopy (FESEM), and Fourier Transform Infrared Spectroscopy (FTIR). Colorimetric evaluation was performed through spectrophotometry with a white background. Samples underwent color assessment using a spectrophotometer, followed by thermocycling, and then another color assessment. Results FESEM analysis showed a uniform distribution of the zMgO nanoparticles in the composite and FTIR illustrated no change in the spectra. However, the XRD spectra exhibited an amorphous pattern in the composite enhanced with zMgO NPs. There was no compelling discrepancy in color variation ΔE among the different groups before and after thermocycling (p > 0.05). A statistically notable variation in ΔL was found amid the control and N-Flow and N-Ceram with 2% zMgO nanospheres before and after thermocycling respectively (p < 0.05). While after thermocycling, there was a statistically significant difference in Δa in N-Flow and N-Ceram wires amid the control and the different groups (p < 0.05). Additionally, after thermocycling there was a statistically significant difference in Δb in N-Flow and N-Ceram wires between the control and the different groups (p < 0.05). The Tukey test exhibited no variation among the groups with different zMgO concentrations (p > 0.05). Conclusion Enhancing N-Flow and N-Ceram composite with antimicrobial zMgO nanowires and nanospheres did not alter the total color stability of the materials before and after thermocycling.

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3