Author:
Alotaibi Ghala,Awawdeh Mohammed,Farook Fathima Fazrina,Aljohani Mohamed,Aldhafiri Razan Mohamed,Aldhoayan Mohamed
Abstract
Abstract
Background
The purpose of this investigation was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the accuracy and usefulness of this system for the detection of alveolar bone loss in periapical radiographs in the anterior region of the dental arches. We also aimed to evaluate the usefulness of the system in categorizing the severity of bone loss due to periodontal disease.
Method
A data set of 1724 intraoral periapical images of upper and lower anterior teeth in 1610 adult patients were retrieved from the ROMEXIS software management system at King Saud bin Abdulaziz University for Health Sciences. Using a combination of pre-trained deep CNN architecture and a self-trained network, the radiographic images were used to determine the optimal CNN algorithm. The diagnostic and predictive accuracy, precision, confusion matrix, recall, F1-score, Matthews Correlation Coefficient (MCC), Cohen Kappa, were calculated using the deep CNN algorithm in Python.
Results
The periapical radiograph dataset was divided randomly into 70% training, 20% validation, and 10% testing datasets. With the deep learning algorithm, the diagnostic accuracy for classifying normal versus disease was 73.0%, and 59% for the classification of the levels of severity of the bone loss. The Model showed a significant difference in the confusion matrix, accuracy, precision, recall, f1-score, MCC and Matthews Correlation Coefficient (MCC), Cohen Kappa, and receiver operating characteristic (ROC), between both the binary and multi-classification models.
Conclusion
This study revealed that the deep CNN algorithm (VGG-16) was useful to detect alveolar bone loss in periapical radiographs, and has a satisfactory ability to detect the severity of bone loss in teeth. The results suggest that machines can perform better based on the level classification and the captured characteristics of the image diagnosis. With additional optimization of the periodontal dataset, it is expected that a computer-aided detection system can become an effective and efficient procedure for aiding in the detection and staging of periodontal disease.
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Åkesson L, Håkansson J, Rohlin M. Comparison of panoramic and intraoral radiography and pocket probing for the measurement of the marginal bone level. J Clin Periodontol. 1992;19(5):326–32.
2. Albandar JM, Abbas DK. Radiographic quantification of alveolar bone level changes: comparison of 3 currently used methods. J Clin Periodontol. 1986;13(9):810–3.
3. Alt KW, Pichler SL. Artificial modifications of human teeth. Dental anthropology: Springer; 1998. p. 387–415.
4. Bindal P, Bindal U, Kazemipoor M, Jha S. Hybrid machine learning approaches in viability assessment of dental pulp stem cells treated with platelet-rich concentrates on different periods. Appl Med Inform. 2019;41(3):93–101.
5. Cecoro G, Annunziata M, Iuorio MT, Nastri L, Guida L. Periodontitis, low-grade inflammation and systemic health: a scoping review. Medicina. 2020;56(6):272.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献