Effect of access cavities on the biomechanics of mandibular molars: a finite element analysis

Author:

Wang Xiao,Wang Dan,Wang Yi-rong,Cheng Xiao-gang,Ni Long-xing,Wang Wei,Tian Yu

Abstract

Abstract Introduction This study aimed to predict the fracture resistance of a mandibular first molar (MFM) with diverse endodontic cavities using finite element analysis (FEA). Methods Five experimental finite element models representing a natural tooth (NT) and 4 endodontically treated MFMs were generated. Treated MFM models were with a traditional endodontic cavity (TEC) and minimally invasive endodontic (MIE) cavities, including guided endodontic cavity (GEC), contracted endodontic cavity (CEC) and truss endodontic cavity (TREC). Three loads were applied, simulating a maximum bite force of 600 N (N) vertically and a normal masticatory force of 225 N vertically and laterally. The distributions of von Mises (VM) stress and maximum VM stress were calculated. Results The maximum VM stresses of the NT model were the lowest under normal masticatory forces. In endodontically treated models, the distribution of VM stress in GEC model was the most similar to NT model. The maximum VM stresses of the GEC and CEC models under different forces were lower than those of TREC and TEC models. Under vertical loads, the maximum VM stresses of the TREC model were the highest, while under the lateral load, the maximum VM stress of the TEC model was the highest. Conclusion The stress distribution of tooth with GEC was most like NT. Compared with TECs, GECs and CECs may better maintain fracture resistance, TRECs, however, may have a limited effect on maintenance of the tooth resistance.

Funder

the Science and Technology Projects of Shannxi Province

the Key Research and Development Program of Shaanxi Province

the New Technology and New Business Stomatological Hospital of the Fourth Military Medical University in 2020

the Key Cultivation Projects of the New Technology and New Business Stomatological Hospital of the Fourth Military Medical University in 2019

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3