A conservative approach to localize loose implant screw through cemented crown: an in vitro experimental study

Author:

Saeed Kale Masoud Mohammad,Al-Zahawi Abdulsalam Rasheed

Abstract

Abstract Background Retrieval of cement-retained implant-supported restorations is intriguing in cases of screw loosening. Detecting the estimated size of the screw access hole (SAH) could decrease destruction to the prosthesis and preserve the crown. Objectives To precisely localize loose implant screws through cemented crowns to reduce crown damage after screw loosening. Materials and methods In this in vitro study, 60 cement-retained implants supported 30 zirconia-based, and 30 ceramics fused to metal (CFM) lower molar crowns were invented, and each was subdivided into three subgroups (10 each). In group I (AI/BI) (control), SAH was created with the aid of orthopantomography (OPG). In contrast, in group II (zirconia-crown), SAH was created with the aid of CBCT + 3D printed surgical guide with a 2 mm metal sleeve in subgroups IIA/IIIA and CBCT + MAR was used to develop SAH in subgroups IIB/IIIB. SEM and Micro-CT scanned the SAH openings to determine the diameter of the hole, cracking, chipping, and chipping volume. Results Regarding the effect of plane CBCT and CBCT + MAR on prepared crowns, a highly significant association between group I with group II (p = 0.001) and group III (p = 0.002) was detected. Regarding the cracking of SAH, significant differences between the zirconium crown and CFM restoration (p = 0.009) were found, while for the chipping, no significant association was seen between groups (p = 0.19). Conclusions CBCT, either as a plane CBCT or with MAR, significantly improved the accuracy of drilling the screw channel and decreased injury to the existing restoration and abutment, aiding in better localization of SAH in loosened implant abutment screws.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3