Abstract
AbstractNavigating an unfamiliar city almost certainly brings out uncertainty about getting from place to place. This uncertainty, in turn, triggers information gathering. While navigational uncertainty is common, little is known about what type of information people seek when they are uncertain. The primary choices for information types with environments include landmarks (distal or local), landmark configurations (relation between two or more landmarks), and a distinct geometry, at least for some environments. Uncertainty could lead individuals to more likely seek one of these information types. Extant research informs both predictions about and empirical work exploring this question. This review covers relevant cognitive literature and then suggests empirical approaches to better understand information-seeking actions triggered by uncertainty. Notably, we propose that examining continuous navigation data can provide important insights into information seeking. Benefits of continuous data will be elaborated through one paradigm, spatial reorientation, which intentionally induces uncertainty through disorientation and cue conflict. While this and other methods have been used previously, data have primarily reflected only the final choice. Continuous behavior during a task can better reveal the cognition-action loop contributing to spatial learning and decision making.
Funder
U.S. Army Combat Capabilities Development Command Soldier Center
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Experimental and Cognitive Psychology
Reference110 articles.
1. Arleo, A., & Gerstner, W. (2000). Modeling rodent head-direction cells and place cells for spatial learning in bio-mimetic robotics. From Animals to Animats, 6, 236–245.
2. Astur, R. S., Tropp, J., Sava, S., Constable, R. T., & Markus, E. J. (2004). Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behavioural Brain Research, 151(1-2), 103–115.
3. Bernoulli, D. (2011). Exposition of a new theory on the measurement of risk. Econometrica, 22(1), 23–36.
4. Bilge, A. R., & Taylor, H. A. (2010). Where is “here” in nested environments? Location accessibility from different sources. Spatial Cognition & Computation, 10(2–3), 157–183.
5. Boer, E. R. (2000). Behavioral entropy as an index of workload. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 44, No. 17, pp. 125–128). Los Angeles: SAGE Publications.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献