Statistical feature training improves fingerprint-matching accuracy in novices and professional fingerprint examiners

Author:

Growns BethanyORCID,Towler Alice,Dunn James D.,Salerno Jessica M.,Schweitzer N. J.,Dror Itiel E.

Abstract

AbstractForensic science practitioners compare visual evidence samples (e.g. fingerprints) and decide if they originate from the same person or different people (i.e. fingerprint ‘matching’). These tasks are perceptually and cognitively complex—even practising professionals can make errors—and what limited research exists suggests that existing professional training is ineffective. This paper presents three experiments that demonstrate the benefit of perceptual training derived from mathematical theories that suggest statistically rare features have diagnostic utility in visual comparison tasks. Across three studies (N = 551), we demonstrate that a brief module training participants to focus on statistically rare fingerprint features improves fingerprint-matching performance in both novices and experienced fingerprint examiners. These results have applied importance for improving the professional performance of practising fingerprint examiners, and even other domains where this technique may also be helpful (e.g. radiology or banknote security).

Funder

UK Research and Innovation

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Experimental and Cognitive Psychology

Reference51 articles.

1. Azevedo, R., Faremo, S., & Lajoie, S. P. (2007). Expert-novice differences in mammogram interpretation. Proceedings of the Annual Meeting of the Cognitive Science Society. https://escholarship.org/content/qt9vs3q436/qt9vs3q436.pdf.

2. Barnhoorn, J. S., Haasnoot, E., Bocanegra, B. R., & van Steenbergen, H. (2015). QRTEngine: An easy solution for running online reaction time experiments using Qualtrics. Behavior Research Methods, 47(4), 918–929. https://doi.org/10.3758/s13428-014-0530-7.

3. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.

4. Biederman, I., & Shiffrar, M. M. (1987). Sexing day-old chicks: A case study and expert systems analysis of a difficult perceptual-learning task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(4), 640–645.

5. Bruce, N. D., & Tsotsos, J. K. (2009). Saliency, attention, and visual search: An information theoretic approach. Journal of Vision, 9(3), 5–5. https://doi.org/10.1167/9.3.5.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3