Syntactic chunking reveals a core syntactic representation of multi-digit numbers, which is generative and automatic

Author:

Dotan DrorORCID,Brutmann Nadin

Abstract

AbstractRepresenting the base-10 structure of numbers is a challenging cognitive ability, unique to humans, but it is yet unknown how precisely this is done. Here, we examined whether and how literate adults represent a number’s full syntactic structure. In 5 experiments, participants repeated number-word sequences and we systematically varied the order of words within each sequence. Repetition on grammatical sequences (e.g., two hundred ninety-seven) was better than on non-grammatical ones (hundred seven two ninety). We conclude that the participants represented the number’s full syntactic structure and used it to merge number words into chunks in short-term memory. Accuracy monotonously improved for sequences with increasingly longer grammatical segments, up to a limit of ~ 4 words per segment, irrespectively of the number of digits, and worsened thereafter. Namely, short chunks improved memorization, whereas oversized chunks disrupted memorization. This chunk size limit suggests that the chunks are not based on predefined structures, whose size limit is not expected to be so low, but are created ad hoc by a generative process, such as the hierarchical syntactic representation hypothesized in Michael McCloskey’s number-processing model. Chunking occurred even when it disrupted performance, as in the oversized chunks, and even when external cues for chunking were controlled for or were removed. We conclude that the above generative process operates automatically rather than voluntarily. To date, this is the most detailed account of the core representation of the syntactic structure of numbers—a critical aspect of numerical literacy and of the ability to read and write numbers.

Funder

Jacobs Foundation

Israel Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Experimental and Cognitive Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3