Sound localization in noisy contexts: performance, metacognitive evaluations and head movements

Author:

Valzolgher ChiaraORCID,Capra Sara,Gessa Elena,Rosi Tommaso,Giovanelli Elena,Pavani Francesco

Abstract

AbstractLocalizing sounds in noisy environments can be challenging. Here, we reproduce real-life soundscapes to investigate the effects of environmental noise on sound localization experience. We evaluated participants' performance and metacognitive assessments, including measures of sound localization effort and confidence, while also tracking their spontaneous head movements. Normal-hearing participants (N = 30) were engaged in a speech-localization task conducted in three common soundscapes that progressively increased in complexity: nature, traffic, and a cocktail party setting. To control visual information and measure behaviors, we used visual virtual reality technology. The results revealed that the complexity of the soundscape had an impact on both performance errors and metacognitive evaluations. Participants reported increased effort and reduced confidence for sound localization in more complex noise environments. On the contrary, the level of soundscape complexity did not influence the use of spontaneous exploratory head-related behaviors. We also observed that, irrespective of the noisy condition, participants who implemented a higher number of head rotations and explored a wider extent of space by rotating their heads made lower localization errors. Interestingly, we found preliminary evidence that an increase in spontaneous head movements, specifically the extent of head rotation, leads to a decrease in perceived effort and an increase in confidence at the single-trial level. These findings expand previous observations regarding sound localization in noisy environments by broadening the perspective to also include metacognitive evaluations, exploratory behaviors and their interactions.

Funder

Velux Stiftung

Italian Ministry for Research and University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3