How the wisdom of crowds, and of the crowd within, are affected by expertise

Author:

Fiechter Joshua L.ORCID,Kornell Nate

Abstract

AbstractWe investigated the effect of expertise on the wisdom of crowds. Participants completed 60 trials of a numerical estimation task, during which they saw 50–100 asterisks and were asked to estimate how many stars they had just seen. Experiment 1 established that both inner- and outer-crowd wisdom extended to our novel task: Single responses alone were less accurate than responses aggregated across a single participant (showing inner-crowd wisdom) and responses aggregated across different participants were even more accurate (showing outer-crowd wisdom). In Experiment 2, prior to beginning the critical trials, participants did 12 practice trials with feedback, which greatly increased their accuracy. There was a benefit of outer-crowd wisdom relative to a single estimate. There was no inner-crowd wisdom effect, however; with high accuracy came highly restricted variance, and aggregating insufficiently varying responses is not beneficial. Our data suggest that experts give almost the same answer every time they are asked and so they should consult the outer crowd rather than solicit multiple estimates from themselves.

Funder

James S. McDonnell Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Experimental and Cognitive Psychology

Reference37 articles.

1. Ariely, D., Au, W. T., Bender, R. H., Budesco, D. V., Dietz, C. B., Gu, H., & Zauberman, G. (2000). The effects of averaging subjective probability estimates between and within judges. Journal of Experimental Psychology: Applied, 6, 130–147.

2. Bennett, S. T., Benjamin, A. S., Mistry, P. K., & Steyvers, M. (2018). Making a crowd wiser: Benefits of individual metacognitive control on crowd performance. Computational Brain & Behavior, 1, 90–99.

3. Bürkner, P.-C. (2019). Brms: Bayesian Regression Models using 'Stan.' Retrieved from https://cran.r-project.org/web/packages/brms/index.html.

4. Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon’s Mechanical Turk as a tool for experimental behavior research. PLoS ONE, 8, e57410.

5. Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus actuarial judgment. Science, 243, 1668–1674.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3