Abstract
AbstractIn a dynamic decision-making task simulating basic ship movements, participants attempted, through a series of actions, to elicit and identify which one of six other ships was exhibiting either of two hostile behaviors. A high-performing, although imperfect, automated attention aid was introduced. It visually highlighted the ship categorized by an algorithm as the most likely to be hostile. Half of participants also received automation transparency in the form of a statement about why the hostile ship was highlighted. Results indicated that while the aid’s advice was often complied with and hence led to higher accuracy with a shorter response time, detection was still suboptimal. Additionally, transparency had limited impacts on all aspects of performance. Implications for detection of hostile intentions and the challenges of supporting dynamic decision making are discussed.
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Experimental and Cognitive Psychology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献