Integrated pharmacokinetics/pharmacodynamics parameters-based dosing guidelines of enrofloxacin in grass carp Ctenopharyngodon idella to minimize selection of drug resistance

Author:

Xu Lijuan,Wang Hao,Yang Xianle,Lu Liqun

Abstract

Abstract Background Antibiotic resistance has become a serious global problem and is steadily increasing worldwide in almost every bacterial species treated with antibiotics. In aquaculture, the therapeutic options for the treatment of A. hydrophila infection were only limited to several antibiotics, which contributed for the fast-speed emergence of drug tolerance. Accordingly, the aim of this study was to establish a medication regimen to prevent drug resistant bacteria. To determine a rational therapeutic guideline, integrated pharmacodynamics and pharmacokinetics parameters were based to predict dose and dosage interval of enrofloxacin in grass carp Ctenopharyngodon idella infected by a field-isolated A. hydrophila strain. Results The pathogenic A. hydrophila strain (AH10) in grass carp was identified and found to be sensitive to enrofloxacin. The mutant selection window (MSW) of enrofloxacin on isolate AH10 was determined to be 0.5 - 3 μg/mL based on the mutant prevention concentration (MPC) and minimum inhibitory concentration (MIC) value. By using high-performance liquid chromatography (HPLC) system, the Pharmacokinetic (PK) parameters of enrofloxacin and its metabolite ciprofloxacin in grass carp were monitored after a single oral gavage of 10, 20, 30 μg enrofloxacin per g body weight. Dosing of 30 μg/g resulted in serum maximum concentration (Cmax) of 7.151 μg/mL, and concentration in serum was above MPC till 24 h post the single dose. Once-daily dosing of 30 μg/g was determined to be the rational choice for controlling AH10 infection and preventing mutant selection in grass carp. Data of mean residue time (MRT) and body clearance (CLz) indicated that both enrofloxacin and its metabolite ciprofloxacin present similar eliminating rate and pattern in serum, muscle and liver. A withdraw time of more than 32 d was suggested based on the drug eliminating rate and pharmacokinetic model described by a polyexponential equation. Conclusions Based on integrated PK/PD parameters (AUC/MIC, Cmax/MIC, and T>MPC), the results of this study established a principle, for the first time, on drawing accurate dosing guideline for pharmacotherapy against A. hydrophila strain (AH10) for prevention of drug-resistant mutants. Our approach in combining PK data with PD parameters (including MPC and MSW) was the new effort in aquaculture to face the challenge of drug resistance by drawing a specific dosage guideline of antibiotics.

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3