Author:
Fernandes Marco Bernardo C,Guimarães João Antônio Matheus,Casado Priscila Ladeira,Cavalcanti Amanda dos Santos,Gonçalves Natalia N,Ambrósio Carlos E,Rodrigues Fernando,Pinto Ana Carolina F,Miglino Maria Angélica,Duarte Maria Eugênia L
Abstract
Abstract
Background
The repair of large bone defects is a major orthopedic challenge because autologous bone grafts are not available in large amounts and because harvesting is often associated with donor-site morbidity. Considering that bone marrow stromal cells (BMSC) are responsible for the maintenance of bone turnover throughout life, we investigated bone repair at a site of a critically sized segmental defect in sheep tibia treated with BMSCs loaded onto allografts. The defect was created in the mid-portion of the tibial diaphysis of eight adult sheep, and the sheep were treated with ex-vivo expanded autologous BMSCs isolated from marrow aspirates and loaded onto cortical allografts (n = 4). The treated sheep were compared with control sheep that had been treated with cell-free allografts (n = 4) obtained from donors of the same breed as the receptor sheep.
Results
The healing response was monitored by radiographs monthly and by computed tomography and histology at six, ten, fourteen, and eighteen weeks after surgery. For the cell-loaded allografts, union was established more rapidly at the interface between the host bone and the allograft, and the healing process was more conspicuous. Remodeling of the allograft was complete at 18 weeks in the cell-treated animals. Histologically, the marrow cavity was reestablished, with intertrabecular spaces being filled with adipose marrow and with evidence of focal hematopoiesis.
Conclusions
Allografts cellularized with AOCs (allografts of osteoprogenitor cells) can generate great clinical outcomes to noncellularized allografts to consolidate, reshape, structurally and morphologically reconstruct bone and bone marrow in a relatively short period of time. These features make this strategy very attractive for clinical use in orthopedic bioengineering.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference25 articles.
1. Trafton PG: Tibial Shaft Fractures. Elsevier Science. 2003, 57: 2131-2255.
2. Solomon LB, Callary SA, Boopalan PR, Chakrabarty A, Costi JJ, Howie DW: Impaction bone grafting of segmental bone defects in femoral non-unions. Acta Orthop Belg. 2013, 79: 64-70.
3. Katsenis D, Triantafillis V, Chatzicristos M, Dendrinos G: The reconstruction of tibial metaphyseal comminution using hybrid frames in severe tibial plafond fractures. J Orthop Trauma. 2013, 27: 153-157. 10.1097/BOT.0b013e31825cf521.
4. Lin CC, Chen CM, Chiu FY, Su YP, Liu CL, Chen TH: Staged protocol for the treatment of chronic tibial shaft osteomyelitis with Ilizarov's technique followed by the application of intramedullary locked nail. Orthopedics. 2012, 35: 1769-1774. 10.3928/01477447-20121120-23.
5. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D: Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010, 132: 15-30.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献