Author:
Gordon Paz F,van den Borne Bart HP,Reist Martin,Kohler Samuel,Doherr Marcus G
Abstract
Abstract
Background
Prophylactic measures are key components of dairy herd mastitis control programs, but some are only relevant in specific housing systems. To assess the association between management practices and mastitis incidence, data collected in 2011 by a survey among 979 randomly selected Swiss dairy farms, and information from the regular test day recordings from 680 of these farms was analyzed.
Results
The median incidence of farmer-reported clinical mastitis (ICM) was 11.6 (mean 14.7) cases per 100 cows per year. The median annual proportion of milk samples with a composite somatic cell count (PSCC) above 200,000 cells/ml was 16.1 (mean 17.3) %. A multivariable negative binomial regression model was fitted for each of the mastitis indicators for farms with tie-stall and free-stall housing systems separately to study the effect of other (than housing system) management practices on the ICM and PSCC events (above 200,000 cells/ml). The results differed substantially by housing system and outcome. In tie-stall systems, clinical mastitis incidence was mainly affected by region (mountainous production zone; incidence rate ratio (IRR) = 0.73), the dairy herd replacement system (1.27) and farmers age (0.81). The proportion of high SCC was mainly associated with dry cow udder controls (IRR = 0.67), clean bedding material at calving (IRR = 1.72), using total merit values to select bulls (IRR = 1.57) and body condition scoring (IRR = 0.74). In free-stall systems, the IRR for clinical mastitis was mainly associated with stall climate/temperature (IRR = 1.65), comfort mats as resting surface (IRR = 0.75) and when no feed analysis was carried out (IRR = 1.18). The proportion of high SSC was only associated with hand and arm cleaning after calving (IRR = 0.81) and beef producing value to select bulls (IRR = 0.66).
Conclusions
There were substantial differences in identified risk factors in the four models. Some of the factors were in agreement with the reported literature while others were not. This highlights the multifactorial nature of the disease and the differences in the risks for both mastitis manifestations. Attempting to understand these multifactorial associations for mastitis within larger management groups continues to play an important role in mastitis control programs.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference46 articles.
1. LeBlanc SJ, Lissemore KD, Kelton DF, Duffield TF, Leslie KE: Major advances in disease prevention in dairy cattle. J Dairy Sci. 2006, 89: 1267-1279. 10.3168/jds.S0022-0302(06)72195-6.
2. Stärk KDC, Frei-Stäheli C, Frei PP, Pfeiffer DU, Danuser J, Audigé L, Nicolet J, Strasser M, Gottstein B, Kihm U: Häufigkeit and Kosten von Gesundheidsproblemen bei Schweizer Milchkühen und deren Kälbern (1993–1994) [Frequency and cost of health problems in Swiss dairy cows and their calves (1993–1994)]. Schweiz Arch Tierheilkd. 1997, 139: 343-353.
3. Seegers H, Fourichon C, Beaudeau F: Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res. 2003, 34: 475-91. 10.1051/vetres:2003027.
4. Halasa T, Huijps K, Østerås O, Hogeveen H: Economic effects of bovine mastitis and mastitis management: a review. Vet Q. 2007, 29: 18-31. 10.1080/01652176.2007.9695224.
5. Olde Riekerink RG, Barkema HW, Kelton DF, Scholl DT: Incidence rate of clinical mastitis on Canadian dairy farms. J Dairy Sci. 2008, 91: 1366-77. 10.3168/jds.2007-0757.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献