Author:
Mensing Niels,Gasse Hagen,Hambruch Nina,Haeger Jan-Dirk,Pfarrer Christiane,Staszyk Carsten
Abstract
Abstract
Background
The equine periodontium provides tooth support and lifelong tooth eruption on a remarkable scale. These functions require continuous tissue remodeling. It is assumed that multipotent mesenchymal stromal cells (MSC) reside in the periodontal ligament (PDL) and play a crucial role in regulating physiological periodontal tissue regeneration. The aim of this study was to isolate and characterize equine periodontal MSC.
Tissue samples were obtained from four healthy horses. Primary cell populations were har-vested and cultured from the gingiva, from three horizontal levels of the PDL (apical, midtooth and subgingival) and for comparison purposes from the subcutis (masseteric region). Colony-forming cells were grown on uncoated culture dishes and typical in vitro characteristics of non-human MSC, i.e. self-renewal capacity, population doubling time, expression of stemness markers and trilineage differentiation were analyzed.
Results
Colony-forming cell populations from all locations showed expression of the stemness markers CD90 and CD105. In vitro self-renewal capacity was demonstrated by colony-forming unit fibroblast (CFU-F) assays. CFU-efficiency was highest in cell populations from the apical and from the mid-tooth PDL. Population doubling time was highest in subcutaneous cells. All investigated cell populations possessed trilineage differentiation potential into osteogenic, adipogenic and chondrogenic lineages.
Conclusions
Due to the demonstrated in vitro characteristics cells were referred to as equine subcutaneous MSC (eSc-MSC), equine gingival MSC (eG-MSC) and equine periodontal MSC (eP-MSC). According to different PDL levels, eP-MSC were further specified as eP-MSC from the apical PDL (eP-MSCap), eP-MSC from the mid-tooth PDL (eP-MSCm) and eP-MSC from the subgingival PDL (eP-MSCsg). Considering current concepts of cell-based regenerative therapies in horses, eP-MSC might be promising candidates for future clinical applications in equine orthopedic and periodontal diseases.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference88 articles.
1. Berkovitz BKB: The structure of the periodontal ligament: an update. Eur J Orthod. 1990, 12: 51-76.
2. Staszyk C, Wulff W, Jacob HG, Gasse H: The periodontal ligament of equine cheek teeth: The architecture of its collagen fiber apparatus. J Vet Dent. 2006, 23: 143-147.
3. Berkovitz BKB: Periodontal ligament: structural and clinical correlates. Dent Update. 2004, 31: 46-54.
4. Nishida E, Sasaki T, Ishikawa SK, Kosaka K, Aino M, Noguchi T, Teranaka T, Shi-mizu N, Saito M: Transcriptome database KK-Periome for periodontal ligament development: expression profiles of the extracellular matrix genes. Gene. 2007, 404: 70-79. 10.1016/j.gene.2007.09.009.
5. Nishida E, Saito M, Ishikawa S, Sasaki T, Noguchi T, Shimizu N, Teranaka T: Transcriptome analysis of extracellular matrix genes regulating periodontal ligament development. J Dent Res. 2006, 5: 2605.
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献