Author:
Šimundić Metka,Drašler Barbara,Šuštar Vid,Zupanc Jernej,Štukelj Roman,Makovec Darko,Erdogmus Deniz,Hägerstrand Henry,Drobne Damjana,Kralj-Iglič Veronika
Abstract
Abstract
Background
Massive industrial production of engineered nanoparticles poses questions about health risks to living beings. In order to understand the underlying mechanisms, we studied the effects of TiO2 and ZnO agglomerated engineered nanoparticles (EPs) on erythrocytes, platelet-rich plasma and on suspensions of giant unilamelar phospholipid vesicles.
Results
Washed erythrocytes, platelet-rich plasma and suspensions of giant unilamelar phospholipid vesicles were incubated with samples of EPs. These samples were observed by different microscopic techniques. We found that TiO2 and ZnO EPs adhered to the membrane of washed human and canine erythrocytes. TiO2 and ZnO EPs induced coalescence of human erythrocytes. Addition of TiO2 and ZnO EPs to platelet-rich plasma caused activation of human platelets after 24 hours and 3 hours, respectively, while in canine erythrocytes, activation of platelets due to ZnO EPs occurred already after 1 hour. To assess the effect of EPs on a representative sample of giant unilamelar phospholipid vesicles, analysis of the recorded populations was improved by applying the principles of statistical physics. TiO2 EPs did not induce any notable effect on giant unilamelar phospholipid vesicles within 50 minutes of incubation, while ZnO EPs induced a decrease in the number of giant unilamelar phospholipid vesicles that was statistically significant (p < 0,001) already after 20 minutes of incubation.
Conclusions
These results indicate that TiO2 and ZnO EPs cause erythrocyte aggregation and could be potentially prothrombogenic, while ZnO could also cause membrane rupture.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference58 articles.
1. Colvin V: The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 2003, 13: 1166-1170.
2. Oberdorster G, Oberdorster E, Oberdorster J: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Persp. 2005, 113: 823-839. 10.1289/ehp.7339.
3. Iavicoli I, Leso V, Fontana L, Bergamaschi A: Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmaco. 2011, 15: 481-508.
4. Reijnders L: Human health hazards of persistent inorganic and carbon nanoparticles. J Mater Sci. 2012, 47: 5061-5073. 10.1007/s10853-012-6288-3.
5. Yeates DB, Mauderly JL: Inhaled environmental/occupation irritants and allergens: mechanisms of cardiovascular and systemic responses: introduction. Environ Health Persp. 2001, 109: 479-481. 10.1289/ehp.01109s4479.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献