Author:
Herbert Liam J,Vali Leila,Hoyle Deborah V,Innocent Giles,McKendrick Iain J,Pearce Michael C,Mellor Dominic,Porphyre Thibaud,Locking Mary,Allison Lesley,Hanson Mary,Matthews Louise,Gunn George J,Woolhouse Mark EJ,Chase-Topping Margo E
Abstract
Abstract
Background
Escherichia coli (E. coli) O157 is a virulent zoonotic strain of enterohaemorrhagic E. coli. In Scotland (1998-2008) the annual reported rate of human infection is 4.4 per 100,000 population which is consistently higher than other regions of the UK and abroad. Cattle are the primary reservoir. Thus understanding infection dynamics in cattle is paramount to reducing human infections.
A large database was created for farms sampled in two cross-sectional surveys carried out in Scotland (1998 - 2004). A statistical model was generated to identify risk factors for the presence of E. coli O157 on farms. Specific hypotheses were tested regarding the presence of E. coli O157 on local farms and the farms previous status. Pulsed-field gel electrophoresis (PFGE) profiles were further examined to ascertain whether local spread or persistence of strains could be inferred.
Results
The presence of an E. coli O157 positive local farm (average distance: 5.96km) in the Highlands, North East and South West, farm size and the number of cattle moved onto the farm 8 weeks prior to sampling were significant risk factors for the presence of E. coli O157 on farms. Previous status of a farm was not a significant predictor of current status (p = 0.398). Farms within the same sampling cluster were significantly more likely to be the same PFGE type (p < 0.001), implicating spread of strains between local farms. Isolates with identical PFGE types were observed to persist across the two surveys, including 3 that were identified on the same farm, suggesting an environmental reservoir. PFGE types that were persistent were more likely to have been observed in human clinical infections in Scotland (p < 0.001) from the same time frame.
Conclusions
The results of this study demonstrate the spread of E. coli O157 between local farms and highlight the potential link between persistent cattle strains and human clinical infections in Scotland. This novel insight into the epidemiology of Scottish E. coli O157 paves the way for future research into the mechanisms of transmission which should help with the design of control measures to reduce E. coli O157 from livestock-related sources.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference41 articles.
1. Yim JY, Yoon J, Hovde CJ: A Brief Overview of Escherichia coli O157: H7 and its Plasmid O157. J Microbiol Biotechnol. 2010, 20 (1): 5-14.
2. Chase-Topping ME, Gally D, Low C, Matthews L, Woolhouse MEJ: Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Microbiol. 2008, 6: 904-912. 10.1038/nrmicro2029.
3. Mead PS, Griffin PM: Escherichia coli O157:H7. Lancet. 1998, 352: 1207-1212. 10.1016/S0140-6736(98)01267-7.
4. Sakuma M, Urashima M, Okabe N: Verocytotoxin producing Escherichia coli, Japan, 1999-2004. Emerg Infect Dis. 2006, 12: 323-325. 10.3201/eid1202.050268.
5. Locking ME, Allison L, Smith-Palmer A, Rae L, Hanson M, Cowden J: Most farm related E. coli O157 outbreaks in Scotland occur on private farms, rather than open farms. [http://www.documents.hps.scot.nhs.uk/posters/2010/farms-ecoli-scotland-private-open.pdf]
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献