Insulin signaling in skeletal muscle during inflammation and/or immobilisation

Author:

Grunow Julius J.,Gan Thomas,Lewald Heidrun,Martyn J. A. Jeevendra,Blobner Manfred,Schaller Stefan J.ORCID

Abstract

Abstract Background The decline in the downstream signal transduction pathway of anabolic hormone, insulin, could play a key role in the muscle atrophy and insulin resistance observed in patients with intensive care unit acquired weakness (ICUAW). This study investigated the impact of immobilisation via surgical knee and ankle fixation and inflammation via Corynebacterium parvum injection, alone and in combination, as risk factors for altering insulin transduction and, therefore, their role in ICUAW. Results Muscle weight was significantly decreased due to immobilisation [estimated effect size (95% CI) − 0.10 g (− 0.12 to − 0.08); p < 0.001] or inflammation [estimated effect size (95% CI) − 0.11 g (− 0.13 to − 0.09); p < 0.001] with an additive effect of both combined (p = 0.024). pAkt was only detectable after insulin stimulation [estimated effect size (95% CI) 85.1-fold (76.2 to 94.0); p < 0.001] irrespective of the group and phosphorylation was not impaired by the different perturbations. Nevertheless, the phosphorylation of GSK3 observed in the control group after insulin stimulation was decreased in the immobilisation [estimated effect size (95% CI) − 40.2 (− 45.6 to − 34.8)] and inflammation [estimated effect size (95% CI) − 55.0 (− 60.4 to − 49.5)] groups. The expression of phosphorylated GS (pGS) was decreased after insulin stimulation in the control group and significantly increased in the immobilisation [estimated effect size (95% CI) 70.6-fold (58.8 to 82.4)] and inflammation [estimated effect size (95% CI) 96.7 (85.0 to 108.5)] groups. Conclusions Both immobilisation and inflammation significantly induce insulin resistance, i.e., impair the insulin signaling pathway downstream of Akt causing insufficient GSK phosphorylation and, therefore, its activation which caused increased glycogen synthase phosphorylation, which could contribute to muscle atrophy of immobilisation and inflammation.

Funder

Berlin Institute of Health

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dietary protein in the ICU in relation to health outcomes;Current Opinion in Clinical Nutrition & Metabolic Care;2024-08-02

2. Sarcopenic obesity: epidemiology, pathogenesis and diagnostic criteria;Cardiovascular Therapy and Prevention;2023-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3