Analysis of acid–base disorders in an ICU cohort using a computer script

Author:

Forsal Innas,Bodelsson Mikael,Wieslander Anders,Nilsson Anders,Pouchoulin Dominique,Broman MarcusORCID

Abstract

Abstract Background/aims Acid–base status is important for understanding pathophysiology, making a diagnosis, planning effective treatment and monitoring progress of critically ill patients. Manual calculations are cumbersome, easily result in wrong conclusions. We wanted to develop an automated assessment of acid–base status. Methods A simplified adaptive MATLAB script processing all available theory to date was created, evaluated and used on blood gas analyses drawn immediately after admission to ICU. The script was compared to golden standard, calculating manually by two experienced ICU physicians. Results Results from the script correlated completely with detailed manual calculations of randomly chosen 100 blood gas results and it was able to deliver complex data on cohort level with advanced graphics. The initial blood gas analyses from 8875 admissions constituted the cohort, of which 4111 (46.3%) were normal. Respiratory acidosis was the primary disturbance in 2753 (31.0%) and metabolic acidosis in 464 (5.2%). Respiratory alkalosis was the primary disturbance in 1501 (17.0%) and metabolic alkalosis in 46 (0.5%). Of the disturbances 74.7% were mixed with two and 2.1% with three simultaneous disturbances. Acidoses were less compensated compared to alkaloses. Conclusions Acid–base theories are developed on ideal models and not on critical care patients, they require inputs that might not be available, and therefore, estimations are needed. In our cohort, it was difficult to develop a working script based on Stewart, whereas Boston/Copenhagen worked better. Acidoses were more common and more deviated compared to alkaloses.

Funder

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Reference20 articles.

1. Hughes R, Brain MJ (2013) A simplified bedside approach to acid–base: fluid physiology utilizing classical and physicochemical approaches. Anaesth Intensive Care Med 14:445–452

2. Ratanarat R, Sodapak C, Poompichet A, Toomthong P (2013) Use of different approaches of acid–base derangement to predict mortality in critically ill patients. J Med Assoc Thail 96(Suppl 2):S216–S223

3. Todorović J, Nešovic-Ostojić J, Milovanović A, Brkić P, Ille M, Čemerikić D (2015) The assessment of acid–base analysis: comparison of the “traditional” and the “modern” approaches. Med Glas 12:7–18

4. Matousek S, Handy J, Rees SE (2011) Acid–base chemistry of plasma: consolidation of the traditional and modern approaches from a mathematical and clinical perspective. J Clin Monit Comput 25:57–70

5. Adrogué HJ, Madias NE (2016) Assessing acid–base status: physiologic versus physicochemical approach. Am J Kidney Dis 68:793–802

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3