A mock circulation loop to test extracorporeal CO2 elimination setups

Author:

Schwärzel Leonie S.,Jungmann Anna M.,Schmoll Nicole,Seiler Frederik,Muellenbach Ralf M.,Schenk Joachim,Dinh Quoc Thai,Bals Robert,Lepper Philipp M.ORCID,Omlor Albert J.

Abstract

Abstract Background Extracorporeal carbon dioxide removal (ECCO2R) is a promising yet limited researched therapy for hypercapnic respiratory failure in acute respiratory distress syndrome and exacerbated chronic obstructive pulmonary disease. Herein, we describe a new mock circuit that enables experimental ECCO2R research without animal models. In a second step, we use this model to investigate three experimental scenarios of ECCO2R: (I) the influence of hemoglobin concentration on CO2 removal. (II) a potentially portable ECCO2R that uses air instead of oxygen, (III) a low-flow ECCO2R that achieves effective CO2 clearance by recirculation and acidification of the limited blood volume of a small dual lumen cannula (such as a dialysis catheter). Results With the presented ECCO2R mock, CO2 removal rates comparable to previous studies were obtained. The mock works with either fresh porcine blood or diluted expired human packed red blood cells. However, fresh porcine blood was preferred because of better handling and availability. In the second step of this work, hemoglobin concentration was identified as an important factor for CO2 removal. In the second scenario, an air-driven ECCO2R setup showed only a slightly lower CO2 wash-out than the same setup with pure oxygen as sweep gas. In the last scenario, the low-flow ECCO2R, the blood flow at the test membrane lung was successfully raised with a recirculation channel without the need to increase cannula flow. Low recirculation ratios resulted in increased efficiency, while high recirculation ratios caused slightly reduced CO2 removal rates. Acidification of the CO2 depleted blood in the recirculation channel caused an increase in CO2 removal rate. Conclusions We demonstrate a simple and cost effective, yet powerful, “in-vitro” ECCO2R model that can be used as an alternative to animal experiments for many research scenarios. Moreover, in our approach parameters such as hemoglobin level can be modified more easily than in animal models.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3