Validation of an alternative technique for RQ estimation in anesthetized pigs

Author:

Karlsson JacobORCID,Svedmyr Anders,Wallin Mats,Hallbäck Magnus,Lönnqvist Per-Arne

Abstract

Abstract Background Respiratory quotient (RQ) is an important variable when assessing metabolic status in intensive care patients. However, analysis of RQ requires cumbersome technical equipment. The aim of the current study was to examine a simplified blood gas-based method of RQ assessment, using Douglas bag measurement of RQ (Douglas-RQ) as reference in a laboratory porcine model under metabolic steady state. In addition, we aimed at establishing reference values for RQ in the same population, thereby generating data to facilitate further research. Methods RQ was measured in 11 mechanically ventilated pigs under metabolic steady state using Douglas-RQ and CO-oximetry blood gas analysis of pulmonary artery and systemic carbon dioxide and oxygen content. The CO-oximetry data were used to calculate RQ (blood gas RQ). Paired recordings with both methods were made once in the morning and once in the afternoon and values obtained were analyzed for potential significant differences. Results The average Douglas-RQ, for all data points over the whole day, was 0.97 (95%CI 0.95–0.99). The corresponding blood gas RQ was 0.95 (95%CI 0.87–1.02). There was no statistically significant difference in RQ values obtained using Douglas-RQ or blood gas RQ for all data over the whole day (P = 0.43). Bias was − 0.02 (95% limits of agreement ± 0.3). Douglas-RQ decreased during the day 1.00 (95%CI 0.97–1.03) vs 0.95 (95%CI 0.92–0.98) P < 0.001, whereas the decrease was not significant for blood gas RQ 1.02 (95%CI 0.89–1.16 vs 0.87 (0.80–0.94) P = 0.11. Conclusion RQ values obtained with blood gas analysis did not differ statistically, compared to gold standard Douglas bag RQ measurement, showing low bias but relatively large limits of agreement, when analyzed for the whole day. This indicates that a simplified blood gas-based method for RQ estimations may be used as an alternative to gold standard expired gas analysis on a group level, even if individual values may differ. In addition, RQ estimated with Douglas bag analysis of exhaled air, was 0.97 in anesthetized non-fasted pigs and decreased during prolonged anesthesia.

Funder

Karolinska Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3