Closed-loop automated critical care as proof-of-concept study for resuscitation in a swine model of ischemia–reperfusion injury

Author:

Patel Nathan T. P.ORCID,Goenaga-Diaz Eduardo J.,Lane Magan R.,Austin Johnson M.,Neff Lucas P.,Williams Timothy K.

Abstract

Abstract Background Volume expansion and vasopressors for the treatment of shock is an intensive process that requires frequent assessments and adjustments. Strict blood pressure goals in multiple physiologic states of shock (traumatic brain injury, sepsis, and hemorrhagic) have been associated with improved outcomes. The availability of continuous physiologic data is amenable to closed-loop automated critical care to improve goal-directed resuscitation. Methods Five adult swine were anesthetized and subjected to a controlled 30% estimated total blood volume hemorrhage followed by 30 min of complete supra-celiac aortic occlusion and then autotransfusion back to euvolemia with removal of aortic balloon. The animals underwent closed-loop critical care for 255 min after removal of the endovascular aortic balloon. The closed-loop critical care algorithm used proximal aortic pressure and central venous pressure as physiologic input data. The algorithm had the option to provide programmatic control of pumps for titration of vasopressors and weight-based crystalloid boluses (5 ml/kg) to maintain a mean arterial pressure between 60 and 70 mmHg. Results During the 255 min of critical care the animals experienced hypotension (< 60 mmHg) 15.3% (interquartile range: 8.6–16.9%), hypertension (> 70 mmHg) 7.7% (interquartile range: 6.7–9.4%), and normotension (60–70 mmHg) 76.9% (interquartile range: 76.5–81.2%) of the time. Excluding the first 60 min of the critical care phase the animals experienced hypotension 1.0% (interquartile range: 0.5–6.7%) of the time. Median intervention rate was 8.47 interventions per hour (interquartile range: 7.8–9.2 interventions per hour). The proportion of interventions was 61.5% (interquartile range: 61.1–66.7%) weight-based crystalloid boluses and 38.5% (interquartile range: 33.3–38.9%) titration of vasopressors. Conclusion This autonomous critical care platform uses critical care adjuncts in an ischemia–reperfusion injury model, utilizing goal-directed closed-loop critical care algorithm and device actuation. This description highlights the potential for this approach to deliver nuanced critical care in the ICU environment, thereby optimizing resuscitative efforts and expanding capabilities through cognitive offloading. Future efforts will focus on optimizing this platform through comparative studies of inputs, therapies, and comparison to manual critical care.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3