Benefits of immersive collaborative learning in CAVE-based virtual reality

Author:

de Back Tycho T.ORCID,Tinga Angelica M.,Nguyen Phong,Louwerse Max M.

Abstract

AbstractHow to make the learning of complex subjects engaging, motivating, and effective? The use of immersive virtual reality offers exciting, yet largely unexplored solutions to this problem. Taking neuroanatomy as an example of a visually and spatially complex subject, the present study investigated whether academic learning using a state-of-the-art Cave Automatic Virtual Environment (CAVE) yielded higher learning gains compared to conventional textbooks. The present study leveraged a combination of CAVE benefits including collaborative learning, rich spatial information, embodied interaction and gamification. Results indicated significantly higher learning gains after collaborative learning in the CAVE with large effect sizes compared to a textbook condition. Furthermore, low spatial ability learners benefitted most from the strong spatial cues provided by immersive virtual reality, effectively raising their performance to that of high spatial ability learners. The present study serves as a concrete example of the effective design and implementation of virtual reality in CAVE settings, demonstrating learning gains and thus opening opportunities to more pervasive use of immersive technologies for education. In addition, the study illustrates how immersive learning may provide novel scaffolds to increase performance in those who need it most.

Funder

PACCAR Foundation

DAF Trucks

European Union

Operational Program Zuid

Ministry of Economic Affairs, The Netherlands

Province of Noord-Brabant

Municipality of Tilburg

Municipality of Gilze Rijen

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Education

Reference64 articles.

1. Alhalabi, W. (2016). Virtual reality systems enhance students’ achievements in engineering education. Behaviour & Information Technology, 35(11), 919–925.

2. Allcoat, D., & von Mühlenen, A. (2018). Learning in virtual reality: Effects on performance, emotion and engagement. Research in Learning Technology, 26, 1–13.

3. Bacim, F., Ragan, E., Scerbo, S., Polys, N. F., Setareh, M., & Jones, B. D. (2013). The effects of display fidelity, visual complexity, and task scope on spatial understanding of 3D graphs. In Proceedings of Graphics Interface 2013, (pp. 25–32). Canada: Canadian Information Processing Society.

4. Barab, S. A., Scott, B., Siyahhan, S., Goldstone, R., Ingram-Goble, A., Zuiker, S. J., & Warren, S. (2009). Transformational play as a curricular scaffold: Using videogames to support science education. Journal of Science Education and Technology, 18(4), 305–320.

5. Barrett, J. (2008). The aptitude test workbook: Discover your potential and improve your career options with practice psychometric tests. London: Kogan Page.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3