Prerequisites for artificial intelligence in further education: identification of drivers, barriers, and business models of educational technology companies

Author:

Renz André,Hilbig Romy

Abstract

AbstractThe ongoing datafication of our social reality has resulted in the emergence of new data-based business models. This development is also reflected in the education market. An increasing number of educational technology (EdTech) companies are entering the traditional education market with data-based teaching and learning solutions, and they are permanently transforming the market. However, despite the current market dynamics, there are hardly any business models that implement the possibilities of Learning Analytics (LA) and Artificial Intelligence (AI) to create adaptive teaching and learning paths. This paper focuses on EdTech companies and the drivers and barriers that currently affect data-based teaching and learning paths. The results show that LA especially are integrated into the current business models of EdTech companies on three levels, which are as follows: basic Learning Analytics, Learning Analytics and algorithmic or human-based recommendations, and Learning Analytics and adaptive teaching and learning (AI based). The discourse analysis reveals a diametrical relationship between the traditional educational ideal and the futuristic idea of education and knowledge transfer. While the desire for flexibility and individualization drives the debate on AI-based learning systems, a lack of data sovereignty, uncertainty and a lack of understanding of data are holding back the development and implementation of appropriate solutions at the same time.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Education

Reference75 articles.

1. Abdelkafi, N., Hilbig, R., & Laudien, S. M. (2018). Business models of entrepreneurial universities in the area of vocational education–an exploratory analysis. International Journal of Technology Management, 77, 86–108.

2. Alexander, B., Ashford-Rowe, K., Barajas-Murphy, N., Dobbin, G., Knott, J., McCormack, M., … Weber, N. (2019). EDUCAUSE horizon report: 2019 higher education edition.

3. Arroway, P., Morgan, G., O’Keefe, M., & Yanosky, R. (2016). Learning Analytics in Higher Education. Research report. Louisville: ECAR https://library.educause.edu/~/media/files/library/2016/2/ers1504la. Accessed 31 Jul 2019.

4. Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning analytics: Methods, benefits, and challenges in higher education: A systematic literature review. Online Learning, 20(2), 13–29.

5. Baden-Fuller, C., & Mangematin, V. (2015). Business models and modelling business models. Advances in Strategic Management, 33, xi–xxii.

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3