Impact of remote experimentation, interactivity and platform effectiveness on laboratory learning outcomes

Author:

Achuthan KrishnashreeORCID,Raghavan Dhananjay,Shankar Balakrishnan,Francis Saneesh P.,Kolil Vysakh Kani

Abstract

AbstractAccess and personalized instruction required for laboratory education can be highly compromised due to regulatory constraints in times such as COVID-19 pandemic or resource shortages at other times. This directly impacts the student engagement and immersion that are necessary for conceptual and procedural understanding for scientific experimentation. While online and remote laboratories have potential to address the aforementioned challenges, theoretical perspectives of laboratory learning outcomes are critical to enhance their impact and are sparsely examined in the literature. Using Transactional Distance Theory (TDT), this paper addresses the gap through a case study on Universal Testing Machine (UTM). By comparing physical (PL-UTM) and remotely triggerable (RT-UTM) laboratory platforms, the structure and interactions as per TDT are analysed. Characterization of interactivity between remote learners and instructors disclose indicative parameters that affect transactional distances and aid in conceptual understanding in remote laboratory learning environment. An extensive pedagogical study through development of two instruments towards assessing conceptual understanding and perception of platform effectiveness that was conducted both on physical laboratory and RT-UTM showed: (1) remote users conducted experiments 3 times more frequently (2) completed assignments in 30% less time and (3) had over 200% improvement in scores when RT-UTM platform was integrated into mainstream learning.

Funder

Ministry of Human Resource Development

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Education

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3