1. Ahadi, A., Lister, R., Haapala, H., & Vihavainen, A. (2015). Exploring machine learning methods to automatically identify students in need of assistance. In Proceedings of the 11th annual International Conference on International Computing Education Research (pp. 121–130). New York: ACM.
2. Anderson, M. R., Antenucci, D., Bittorf, V., Burgess, M., Cafarella, M. J., Kumar, A., Niu, F., Park, Y., Ré, C., & Zhang, C. (2013). Brainwash: A Data System for Feature Engineering. In The 6th Biennial Conference on Innovative Data Systems Research.
3. Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: using learning analytics to increase student success. In The 2nd international conference on learning analytics and knowledge (pp. 267–270). New York: ACM.
4. Baker, R. S., Gowda, S. M., & Corbett, A. T. (2011). Towards predicting future transfer of learning. In Proceedings of the 15th International Conference on Artificial Intelligence in Education (pp. 23–30). Heidelberg: Springer Berlin.
5. Baker, R. S., Gowda, S., & Corbett, A. T. (2010). Automatically detecting a student’s preparation for future learning: Help use is key. In Proceedings of the 4th International Conference on Educational Data Mining. Massachusetts: The International Educational Data Mining Society.