Author:
Mo Yiqun,Mo Luke,Zhang Yue,Zhang Yuanbao,Yuan Jiali,Zhang Qunwei
Abstract
Abstract
Background
Epidemiological studies have demonstrated that individuals with preexisting conditions, including diabetes mellitus (DM), are more susceptible to air pollution. However, the underlying mechanisms remain unclear. In this study, we proposed that a high glucose setting enhances ambient fine particulate matter (PM2.5)-induced macrophage activation and secretion of the proinflammatory cytokine, IL-1β, through activation of the NLRP3 inflammasome, altering the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs).
Results
Exposure of mouse alveolar macrophages to non-cytotoxic doses of PM2.5 led to upregulation of IL-1β, activation of the NLRP3 inflammasome, increased nuclear translocation of the transcription factor NF-κB, increased generation of reactive oxygen species (ROS), and increased expression and enzymatic activity of MMP-9; these effects were enhanced when cells were pretreated with high glucose. However, pretreatment in a high glucose setting alone did not induce significant changes. ROS generation following PM2.5 exposure was abolished when cells were pretreated with ROS scavengers such as Trolox and superoxide dismutase (SOD), or with an NADPH oxidase inhibitor, DPI. Pretreatment of cells with DPI attenuated the effects of a high glucose setting on PM2.5-induced upregulation of IL-1β, activation of the NLRP3 inflammasome, and nuclear translocation of NF-κB. In addition, enhancement of PM2.5-induced expression and enzymatic activity of MMP-9 following high glucose pretreatment was not observed in primary alveolar macrophages obtained from NLRP3 or IL-1R1 knockout (KO) mice, where pro-IL-1β cannot be cleaved to IL-1β or cells are insensitive to IL-1β, respectively.
Conclusions
This study demonstrated that exposure of mouse alveolar macrophages to PM2.5 in a high glucose setting enhanced PM2.5-induced production of IL-1β through activation of the NLRP3 inflammasome and nuclear translocation of NF-κB due to PM2.5-induced oxidative stress, leading to MMP-9 upregulation. The key role of NADPH oxidase in PM2.5-induced ROS generation and activation of the IL-1β secretion pathway and the importance of IL-1β secretion and signaling in PM2.5-induced increases in MMP-9 enzymatic activity were also demonstrated. This study provides a further understanding of the potential mechanisms underlying the susceptibility of individuals with DM to air pollution and suggests potential therapeutic targets.
Funder
National Heart, Lung, and Blood Institute
National Institute of Environmental Health Sciences
Kentucky Science and Engineering Foundation
Kentucky Lung Cancer Research Program
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine