Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems

Author:

Ding YaoboORCID,Weindl Patrick,Lenz Anke-Gabriele,Mayer Paula,Krebs Tobias,Schmid Otmar

Abstract

Abstract Background Accurate knowledge of cell−/tissue-delivered dose plays a pivotal role in inhalation toxicology studies, since it is the key parameter for hazard assessment and translation of in vitro to in vivo dose-response. Traditionally, (nano-)particle toxicological studies with in vivo and in vitro models of the lung rely on in silio computational or off-line analytical methods for dosimetry. In contrast to traditional in vitro testing under submerged cell culture conditions, the more physiologic air-liquid interface (ALI) conditions offer the possibility for real-time dosimetry using quartz crystal microbalances (QCMs). However, it is unclear, if QCMs are sensitive enough for nanotoxicological studies. We investigated this issue for two commercially available VITROCELL®Cloud ALI exposure systems. Results Quantitative fluorescence spectroscopy of fluorescein-spiked saline aerosol was used to determine detection limit, precision and accuracy of the QCMs implemented in a VITROCELL®Cloud 6 and Cloud 12 system for dose-controlled ALI aerosol-cell exposure experiments. Both QCMs performed linearly over the entire investigated dose range (200 to 12,000 ng/cm2) with an accuracy of 3.4% (Cloud 6) and 3.8% (Cloud 12). Their precision (repeatability) decreased from 2.5% for large doses (> 9500 ng/cm2) to values of 10% and even 25% for doses of 1000 ng/cm2 and 200 ng/cm2, respectively. Their lower detection limit was 170 ng/cm2 and 169 ng/cm2 for the Cloud 6 and Cloud 12, respectively. Dose-response measurements with (NM110) ZnO nanoparticles revealed an onset dose of 3.3 μg/cm2 (or 0.39 cm2/cm2) for both cell viability (WST-1) and cytotoxicity (LDH) of A549 lung epithelial cells. Conclusions The QCMs of the Cloud 6 and Cloud 12 systems show similar performance and are highly sensitive, accurate devices for (quasi-) real-time dosimetry of the cell-delivered particle dose in ALI cell exposure experiments, if operated according to manufacturer specifications. Comparison with in vitro onset doses from this and previously published ALI studies revealed that the detection limit of 170 ng/cm2 is sufficient for determination of toxicological onset doses for all particle types with low (e.g. polystyrene) or high mass-specific toxicity (e.g. ZnO and Ag) investigated here. Hence, in principle QCMs are suitable for in vitro nanotoxciological studies, but this should be investigated for each QCM and ALI exposure system under the specific exposure conditions as described in the present study.

Funder

Horizon 2020 Framework Programme

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3