TFEB-lysosome pathway activation is associated with different cell death responses to carbon quantum dots in Kupffer cells and hepatocytes

Author:

Pang Yanting,Yao Ying,Yang Mengran,Wu Daming,Ma Ying,Zhang Yuanjian,Zhang Ting

Abstract

Abstract Background Carbon dot has been widely used in biomedical field as a kind of nanomaterial with low toxicity and high biocompatibility. CDs has demonstrated its unique advantages in assisted drug delivery, target diagnosis and targeted therapy with its small size and spontaneous fluorescence. However, the potential biosafety of CDs cannot be evaluated. Therefore, we focused on the study of liver, the target organ involved in CDs metabolism, to evaluate the risk of CDs in vitro. Methods and results Liver macrophage KUP5 cells and normal liver cells AML12 cells were incubated in CDs at the same concentration for 24 h to compare the different effects under the same exposure conditions. The study found that both liver cell models showed ATP metabolism disorder, membrane damage, autophagosome formation and lysosome damage, but the difference was that, KUP5 cells exhibited more serious damage than AML12 cells, suggesting that immunogenic cell type is particularly sensitive to CDs. The underlying mechanism of CDs-induced death of the two hepatocyte types were also assessed. In KUP5 cells, death was caused by inhibition of autophagic flux caused by autophagosome accumulation, this process that was reversed when autophagosome accumulation was prevented by 3-MA. AML12 cells had no such response, suggesting that the accumulation of autophagosomes caused by CDs may be specific to macrophages. Conclusion Activation of the TFEB-lysosome pathway is important in regulating autophagy and apoptosis. The dual regulation of ERK and mTOR phosphorylation upstream of TFEB influences the death outcome of AML12 cells. These findings provide a new understanding of how CDs impact different liver cells and contribute to a more complete toxicological safety evaluation of CDs.

Funder

National Natural Science Foundation of China

Provincial Natural Science Funds of Jiangsu

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3