Histopathology of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities in a murine model

Author:

Fraser Kelly,Hubbs Ann,Yanamala Naveena,Mercer Robert R.,Stueckle Todd A.,Jensen Jake,Eye Tracy,Battelli Lori,Clingerman Sidney,Fluharty Kara,Dodd Tiana,Casuccio Gary,Bunker Kristin,Lersch Traci L.,Kashon Michael L.,Orandle Marlene,Dahm Matthew,Schubauer-Berigan Mary K.,Kodali Vamsi,Erdely AaronORCID

Abstract

Abstract Background Multi-walled carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their potential toxicities; however, comparative studies of the broad material class are lacking, especially those with a larger diameter. Additionally, computational modeling correlating physicochemical characteristics and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar toxicity, including histopathology changes such as pulmonary fibrosis. Male C57BL/6 mice were exposed to 40 µg of one of nine CNT/F (MW #1–7 and CNF #1–2) commonly found in exposure assessment studies of U.S. facilities with diameters ranging from 6 to 150 nm. Human fibroblasts (0–20 µg/ml) were used to assess the predictive value of in vitro to in vivo modeling systems. Results All materials induced histopathology changes, although the types and magnitude of the changes varied. In general, the larger diameter MWs (MW #5–7, including Mitsui-7) and CNF #1 induced greater histopathology changes compared to MW #1 and #3 while MW #4 and CNF #2 were intermediate in effect. Differences in individual alveolar or bronchiolar outcomes and severity correlated with physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to be insufficient to fully replicate in vivo fibrosis outcomes suggesting in vitro predictive potential depends upon more advanced cell culture in vitro models. Pleural penetrations were observed more consistently in CNT/F with larger lengths and diameters. Conclusion Physicochemical characteristics, notably nominal CNT/F dimension and agglomerate size, predicted histopathologic changes and enabled grouping of materials by their toxicity profiles. Particles of greater nominal tube length were generally associated with increased severity of histopathology outcomes. Larger particle lengths and agglomerates were associated with more severe bronchi/bronchiolar outcomes. Spherical agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury.

Funder

National Institute for Occupational Safety and Health; Nanotechnology Research Center

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3