Circulatory metabolites trigger ex vivo arterial endothelial cell dysfunction in population chronically exposed to diesel exhaust

Author:

Cheng Wenting,Pang Huanhuan,Campen Matthew J.,Zhang Jianzhong,Li Yanting,Gao Jinling,Ren Dunqiang,Ji Xiaoya,Rothman Nathaniel,Lan Qing,Zheng Yuxin,Leng Shuguang,Hu Zeping,Tang JinglongORCID

Abstract

Abstract Background Chronic exposure to diesel exhaust has a causal link to cardiovascular diseases in various environmental and occupational settings. Arterial endothelial cell function plays an important role in ensuring proper maintenance of cardiovascular homeostasis and the endothelial cell dysfunction by circulatory inflammation is a hallmark in cardiovascular diseases. Acute exposure to diesel exhaust in controlled exposure studies leads to artery endothelial cells dysfunction in previous study, however the effect of chronic exposure remains unknown. Results We applied an ex vivo endothelial biosensor assay for serum samples from 133 diesel engine testers (DETs) and 126 non-DETs with the aim of identifying evidence of increased risk for cardiovascular diseases. Environmental monitoring suggested that DETs were exposed to high levels of diesel exhaust aerosol (282.3 μg/m3 PM2.5 and 135.2 μg/m3 elemental carbon). Surprisingly, chronic diesel exhaust exposure was associated with a pro-inflammatory phenotype in the ex vivo endothelial cell model, in a dose-dependent manner with CCL5 and VCAM as most affected genes. This dysfunction was not mediated by reduction in circulatory pro-inflammatory factors but significantly associated with a reduction in circulatory metabolites cGMP and an increase in primary DNA damage in leucocyte in a dose-dependent manner, which also explained a large magnitude of association between diesel exhaust exposure and ex vivo endothelial biosensor response. Exogenous cGMP addition experiment further confirmed the induction of ex vivo biosensor gene expressions in endothelial cells treated with physiologically relevant levels of metabolites cGMP. Conclusion Serum-borne bioactivity caused the arterial endothelial cell dysfunction may attribute to the circulatory metabolites based on the ex vivo biosensor assay. The reduced cGMP and increased polycyclic aromatic hydrocarbons metabolites-induced cyto/geno-toxic play important role in the endothelial cell dysfunction of workers chronic exposure to diesel exhaust.

Funder

National Natural Science Foundation of China

Guangdong Provincial Natural Science Foundation Team Project

Cancer Center Support Grant National Cancer Institute

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3