The combined effect of food additive titanium dioxide and lipopolysaccharide on mouse intestinal barrier function after chronic exposure of titanium dioxide-contained feedstuffs

Author:

Zhang Yongliang,Duan Shumin,Liu Ying,Wang YunORCID

Abstract

Abstract Objective Up to 44% of particulates of food-grade titanium dioxide (TiO2) are in nanoscale, while the effect and combined effect of which with other substances on intestinal barrier haven’t been fully understood yet. This study is aimed to study the effect of two kinds of TiO2 nanoparticles (TiO2 NPs and TiO2 MPs) on intestinal barrier functions, to reveal the combined effect of TiO2 NPs and Lipopolysaccharide (LPS) on intestinal barrier. Methods Male ICR mice were randomly divided into 18 groups (3 feed types * 3 exposure length * 2 LPS dosage) and were fed with normal or TiO2-mixed feed (containing 1% (mass fraction, w/w) TiO2 NPs or TiO2 MPs) for 1, 3, 6 months, followed by a single oral administration of 0 or 10 mg/(kg body weight) LPS. Four hours later, the transportation of TiO2, the intestinal barrier functions and the inflammatory response were evaluated. Results Both TiO2 notably increased the intestinal villi height / crypt depth ratios after 1 and 3 months of exposure, and increased the expression of ileal tight junction proteins (ZO-1 and occludin) after 1 month of exposure. After 6 months of exposure, TiO2 NPs led to reduced feed consumption, TiO2 MPs caused spare microvilli in small intestine and elevated Ti content in the blood cells. The intestinal permeability didn’t change in both TiO2 exposed groups. After LPS administration, we observed altered intestinal villi height / crypt depth ratios, lowered intestinal permeability (DAO) and upregulated expression of ileal ZO-1 in both (TiO2 +LPS) exposed groups. There are no significant changes of ileal or serum cytokines except for a higher serum TNF-α level in LPS treated group. The antagonistic effect was found between TiO2 NPs and LPS, but there are complicated interactions between TiO2 MPs and LPS. Conclusion Long-term intake of food additive TiO2 could alter the intestinal epithelial structure without influencing intestinal barrier function. Co-exposure of TiO2 and LPS would enhance intestinal barrier function without causing notable inflammatory responses, and there is antagonistic effect between TiO2 NPs and LPS. All the minor effects observed might associate with the gentle exposure method where TiO2 being ingested with feed.

Funder

National Natural Science Foundation of China

the Beijing Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3