Author:
Akagi Jun-ichi,Mizuta Yasuko,Akane Hirotoshi,Toyoda Takeshi,Ogawa Kumiko
Abstract
Abstract
Background
Though titanium dioxide (TiO2) is generally considered to have a low impact in the human body, the safety of TiO2 containing nanosized particles (NPs) has attracted attention. We found that the toxicity of silver NPs markedly varied depending on their particle size, as silver NPs with a diameter of 10 nm exhibited fatal toxicity in female BALB/c mice, unlike those with diameters of 60 and 100 nm. Therefore, the toxicological effects of the smallest available TiO2 NPs with a crystallite size of 6 nm were examined in male and female F344/DuCrlCrlj rats by repeated oral administration of 10, 100, and 1000 mg/kg bw/day (5/sex/group) for 28 days and of 100, 300, and 1000 mg/kg bw/day (10/sex/group) for 90 days.
Results
In both 28- and 90-day studies, no mortality was observed in any group, and no treatment-related adverse effects were observed in body weight, urinalysis, hematology, serum biochemistry, or organ weight. Histopathological examination revealed TiO2 particles as depositions of yellowish-brown material. The particles observed in the gastrointestinal lumen were also found in the nasal cavity, epithelium, and stromal tissue in the 28-day study. In addition, they were observed in Peyer's patches in the ileum, cervical lymph nodes, mediastinal lymph nodes, bronchus-associated lymphoid tissue, and trachea in the 90-day study. Notably, no adverse biological responses, such as inflammation or tissue injury, were observed around the deposits. Titanium concentration analysis in the liver, kidneys, and spleen revealed that TiO2 NPs were barely absorbed and accumulated in these tissues. Immunohistochemical analysis of colonic crypts showed no extension of the proliferative cell zone or preneoplastic cytoplasmic/nuclear translocation of β-catenin either in the male or female 1000 mg/kg bw/day group. Regarding genotoxicity, no significant increase in micronucleated or γ-H2AX positive hepatocytes was observed. Additionally, the induction of γ-H2AX was not observed at the deposition sites of yellowish-brown materials.
Conclusions
No effects were observed after repeated oral administration of TiO2 with a crystallite size of 6 nm at up to 1000 mg/kg bw/day regarding general toxicity, accumulation of titanium in the liver, kidneys, and spleen, abnormality of colonic crypts, and induction of DNA strand breaks and chromosomal aberrations.
Funder
Ministry of Health, Labour and Welfare
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Reference35 articles.
1. Joint FAO/WHO Expert Committee on Food Additives. Specifications for the identity and purity of food additives and their toxicological evaluation: thirteenth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Tech Report Ser. 1970;445:1–43.
2. Han HY, Yang MJ, Yoon C, Lee GH, Kim DW, Kim TW, et al. Toxicity of orally administered food-grade titanium dioxide nanoparticles. J Appl Toxicol. 2021;41:1127–47.
3. Heo MB, Kwak M, An KS, Kim HJ, Ryu HY, Lee SM, et al. Oral toxicity of titanium dioxide P25 at repeated dose 28-day and 90-day in rats. Part Fibre Toxicol. 2020;17:34.
4. Warheit DB, Boatman R, Brown SC. Developmental toxicity studies with 6 forms of titanium dioxide test materials (3 pigment-different grade and 3 nanoscale) demonstrate an absence of effects in orally-exposed rats. Regul Toxicol Pharmacol. 2015;73:887–96.
5. EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Engel KH, Fowler P, et al. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J. 2021;19:e06585.