Particulate matters increase epithelial-mesenchymal transition and lung fibrosis through the ETS-1/NF-κB-dependent pathway in lung epithelial cells

Author:

Chen Yu-Chen,Chuang Tzu-Yi,Liu Chen-Wei,Liu Chi-Wei,Lee Tzu-Lin,Lai Tsai-Chun,Chen Yuh-Lien

Abstract

Abstract Background Particulate matters (PMs) in ambient air pollution are closely related to the incidence of respiratory diseases and decreased lung function. Our previous report demonstrated that PMs-induced oxidative stress increased the expression of proinflammatory intracellular adhesion molecule-1 (ICAM-1) through the IL-6/AKT/STAT3/NF-κB pathway in A549 cells. However, the role of O-PMs in epithelial-mesenchymal transition (EMT) development and pulmonary fibrosis and the related mechanisms have not been determined. The aim of this study was to investigate the effects of O-PMs on the pathogenesis of EMT and pulmonary fibrosis as well as the expression of ETS-1 and NF-κB p65, in vitro and in vivo. Results O-PMs treatment induced EMT development, fibronectin expression, and cell migration. O-PMs affected the expression of the EMT-related transcription factors NF-κB p65 and ETS-1. Interference with NF-κB p65 significantly decreased O-PMs-induced fibronectin expression. In addition, O-PMs affected the expression of fibronectin, E-cadherin, and vimentin through modulating ETS-1 expression. ATN-161, an antagonist of integrin α5β1, decreased the expression of fibronectin and ETS-1 and EMT development. EMT development and the expression of fibronectin and ETS-1 were increased in the lung tissue of mice after exposure to PMs for 7 and 14 days. There was a significant correlation between fibronectin and ETS-1 expression in human pulmonary fibrosis tissue. Conclusion O-PMs can induce EMT and fibronectin expression through the activation of transcription factors ETS-1 and NF-κB in A549 cells. PMs can induce EMT development and the expression of fibronectin and ETS-1 in mouse lung tissues. These findings suggest that the ETS-1 pathway could be a novel and alternative mechanism for EMT development and pulmonary fibrosis.

Funder

Ministry of Health and Welfare

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3